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Abstract: Parkinson’s disease (PD) is a severe, incurable, and costly condition leading to heart failure.
The link between PD and cardiovascular disease (CVD) is not available, leading to controversies
and poor prognosis. Artificial Intelligence (AI) has already shown promise for CVD/stroke risk
stratification. However, due to a lack of sample size, comorbidity, insufficient validation, clinical
examination, and a lack of big data configuration, there have been no well-explained bias-free AI
investigations to establish the CVD/Stroke risk stratification in the PD framework. The study has
two objectives: (i) to establish a solid link between PD and CVD/stroke; and (ii) to use the AI
paradigm to examine a well-defined CVD/stroke risk stratification in the PD framework. The
PRISMA search strategy selected 223 studies for CVD/stroke risk, of which 54 and 44 studies were
related to the link between PD-CVD, and PD-stroke, respectively, 59 studies for joint PD-CVD-Stroke
framework, and 66 studies were only for the early PD diagnosis without CVD/stroke link. Sequential
biological links were used for establishing the hypothesis. For AI design, PD risk factors as covariates
along with CVD/stroke as the gold standard were used for predicting the CVD/stroke risk. The
most fundamental cause of CVD/stroke damage due to PD is cardiac autonomic dysfunction due to
neurodegeneration that leads to heart failure and its edema, and this validated our hypothesis. Finally,
we present the novel AI solutions for CVD/stroke risk prediction in the PD framework. The study
also recommends strategies for removing the bias in AI for CVD/stroke risk prediction using the
PD framework.

Keywords: Parkinson’s disease; cardiac autonomic dysfunction; cardiovascular disease; stroke;
artificial intelligence; deep learning; machine learning; recommendations
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1. Introduction

Parkinson’s disease (PD) is a neurological disorder that causes a progressive loss of
coordination and motor difficulties. The condition is named after James Parkinson, a British
surgeon who published the first explanation of it in 1817 [1]. PD is triggered by the loss and
malfunctioning of neurons (nerve cells) in the substantia nigra, a portion of the brain. PD is
characterized by difficulties with dopaminergic neurons, which are brain cells that connect
with other neurons by producing a signaling substance called dopamine, also known as a
neurotransmitter [2–4]. The cost of the treatment and control of the PD is expensive [5]. This
treatment cost of PD is more, as depicted in various studies [1,6]. Further, more numbers of
PD cases were seen in western countries as compared to Asian countries [7,8].

Stroke is one of the leading causes of mortality and severe and long-term disability
across the world [9,10]. Hemorrhagic and ischemic strokes are the two forms of stroke. The
first is produced by blood clots obstructing brain arteries, whereas the second is caused by
vascular rupture [11,12]. According to the World Health Organization (WHO), stroke is the
second leading cause of death and the third major cause of morbidity and mortality each
year, accounting for 6.2 million fatalities in the world [9,13].

Although PD has repeatedly been linked to an increased risk of all-cause of death in
several epidemiologic studies, the data on the link between PD and stroke are mixed [14,15].
According to a few studies [16–18], PD is associated with a greater risk of myocardial
infarction and stroke-related death [19,20], with a hazard ratio ranging from 1.5 to 3.6.
Furthermore, new research suggests that PD is linked to vascular risk factors, including
diabetes and hypertension [21,22]. Meanwhile, other research has indicated that PD patients
had a decreased risk of stroke and have a lower frequency of vascular risk factors [23].
Diabetes and hypertension are also risk factors for ischemic stroke; the link between PD
and stroke may be complicated [24,25].

Complex motor damage can result when PD and CVD are linked to the development
and phenotype of PD [24,26]. Capillary segmentation and associated damage to the capil-
lary network in diverse areas of the brain are caused by vascular abnormalities [27]. The
substantia nigra, the midfrontal cortex, and the basal nuclei of the brain are all affected by
leukoaraiosis [28,29]. All of these factors reduce the impact of antiparkinsonian therapy on
motor and cognitive abilities [30].

Patients having PD are always on the higher risk side of the heart and brain function-
ing abnormalities [31–33]. Heart and brain relative functionality were explained in many
articles [32,34,35]. The alpha-synuclein can trigger abnormalities in the functioning heart
and brain. Figure 1 represents the effect of PD on the severity of brain and heart func-
tioning. There are two key reasons why the automatic coordination of the heart system is
affected in people with PD. First, the regions of the brain that control this system frequently
contain Lewy bodies and have experienced neurodegeneration [36,37]. Furthermore, Lewy
body-like accumulations and neurodegeneration have a direct impact on the autonomic
nervous system. This implies that when the heart and carotid artery baroreceptors detect
a reduction in blood pressure and try to send a signal to the heart and blood vessels to
raise blood pressure, the message may not be received [38,39]. Due to autonomic nervous
system malfunction, this causes neurogenic orthostatic hypotension (nOH) or dips in blood
pressure when standing. There are no drugs that can restore the autonomic nervous system
to treat nOH [40,41]. When it comes to the cardiac symptoms of PD, the focus is usually
on nOH, which then creates changes in heart rate, which is another cardiac impact in
PD [42]. Heart rate variability [43,44], which is a measure of the variation in the time
interval between heartbeats, was found to be higher in patients who eventually developed
PD than in those who did not, suggesting that cardiac autonomic dysfunction could be an
early non-motor symptom of the disease [45,46].

A few of the studies explain that persons with PD exhibit particular electrocardio-
graphic characteristics. These characteristics include a longer PR interval and probably
a longer QTc interval, which refers to parts of the cardiac tracing that are longer than
normal [47,48].
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Artificial intelligence (AI)-based solutions aid in the automated assessment of COVID-
19 severity in patients by using lung images as inputs, removing the need for human
intervention. Several CVD risk assessment applications employing carotid ultrasound
imaging have also benefited from AI-based methods [49–53]. As a result, it may be con-
ceivable to use these AI-based methods to effectively tackle PD-CVD and PD-Stroke or
hemorrhage brain disorders when performing the patient risk evaluation.

AI-based methods have played a vital role recently in computer-aided diagnosis [54–56],
especially in the detection and classification of several diseases [57,58]. It was only recently
that the application of machine learning (ML) has dominated the field of medical imaging
such as diabetes [59,60], cancer such as thyroid [61,62], liver [58] prostate [54,63], skin,
ovarian [55,64], and now more in non-invasive vascular screening [65], risk characterization
using coronary, and carotid angiography [66,67]. Several medical imaging modalities
are available for imaging, such as magnetic resonance imaging (MRI) [68,69], computed
tomography (CT) [70], ultrasound (US) [71], particularly CT for lung imaging depicting
COVID-19 symptoms and their lesions. The deep learning (DL) algorithm was used to
segment the COVID-19 lungs and further to detect the lesion in CT lung scans [68,72,73].
ML models have been used in predicting PD as it contains a variety of the motor symptoms
features (called covariates) available in PD datasets [74–76]. We, therefore, hypothesize
that ML/DL systems can be adopted for CVD/stroke risk prediction in PD patients, hence
evolving a design strategy would benefit in the future.

The objective of this review is to understand the severity of heart failure and stroke in
PD patients, the risk factors of CVD, the clinical linking between PD with heart and brain,
and its effect vice-versa. More important is to understand the role of AI in the risk stratifi-
cation of CVD/stroke in PD patients. Since machine learning and deep learning solutions
help in establishing the early risk assessment of PD patients, this is being demonstrated for
the characterization of CVD, ischemic, and hemorrhage stroke in PD. Lastly, a brief note of
the PD in a COVID-19 affected environment help in looking at and accessing the current
problems faced in disease management as well as the pathophysiology of the PD [77].
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2. Methods

The search approach was based on the PRISMA paradigm shown in Figure 2. PubMed
and Google Scholar are two major databases that were used to identify and screen relevant
papers using keywords such as “Cardiovascular disease,” “Stroke,” “CVD,” “Stroke and
CVD,” “Parkinson’s disease and CVD,” “Parkinson disease and Stroke,” “carotid imaging,”
“Parkinson disease and artificial intelligence,” “atherosclerotic tissue classification and char-
acterization,” “plaque tissue characterization in Parkinson disease,” “artificial intelligence,”
“Parkinson disease and COVID-19,” “atherosclerosis and Parkinson disease.” A total of
204 records were identified through database searching, and 326 items were found through
other sources. This was reduced to 412 articles after quality custom criteria such as time
and relevance. A total of 326 papers were reviewed for inclusion in this review. The three
exclusion criteria were (i) studies not related, (ii) non-relevant articles, and (iii) having
insufficient data. This excluded 86, 71, and 32 studies were shown as E1, E2, and E3, leading
to the final selection of 223 studies.
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Figure 2. Search strategy based on the PRISMA model.

These studies, which are in category (i), are studies that are not related. These studies
either do not have AI or do not show risk stratification of CVD/stroke in PD patients. There
were 86 studies that we removed from the selection process, shown as E1 in the PRISMA
model. Non-relevant studies are ones that are not in the field of view of PD-CVD-stroke.
They were not focused on the PD-CVD-stroke area. Our focus in this study was only on
those papers where PD was related to CVD and stroke. If the studies showed an association
between PD and Diabetes, we did not take that into consideration. There were 71 studies in
this category, shown as E2 in the PRISMA model.
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These insufficient data studies were the studies that did not have enough information
to be selected for consideration in our analysis. These studies did not show a link between
PD and CVD or PD and stroke. No such discussions were attempted. There was no
consideration between PD and CVD risk parameters such as laboratory-based biomarkers,
which include low-density lipoprotein, high-density lipoprotein, estimated glomerular
filtration rate, erythrocyte sedimentation rate, and triglycerides. Further, they did not have
enough AI or CVD, or stroke attributes to be selected for analysis. These AI attributes
can be the architecture used for CVD/stroke risk stratification. These AI attributes can
be solo deep learning models or deep hybrid learning, or neural network parameters for
CVD/stroke risk stratification. We found 32 studies that had insufficient datasets shown
as E3 in the PRISMA model. The complete research article screening process is shown
in Figure 2.

3. The Relationship between PD and Combined Heart and Brain Diseases

PD is still the most prevalent neurodegenerative disorder, with symptoms and signs
such as tremors, bradykinesia, stiffness, and involuntary movements [78–80]. Pathological
factors responsible for aberrant protein aggregation development, alteration of protein
elimination routes, oxidative stress, neuroinflammation, mitochondrial damage, and ge-
netic abnormalities all contribute to the formation of the clinical complexity in PD [81,82].
Heart failure, coronary artery disease, and PD are the main cause of cardiac autonomic
dysfunction, heart failure, sudden death, and edema [83]. PD will increase the likelihood of
developing dementia disorders and is linked with a high rate of morbidity and death [17,84].
To control disease progression, various methods were used, such as stem cell therapy, gene
therapy, exercise, dopaminergic medications, and non-dopaminergic drugs. In the therapy
of PD, nutrition and surgical treatment are crucial [85,86].

3.1. The Relationship between PD and Atherosclerosis Leading to CVD

The accumulation of plaque in the inner lining of an artery causes atherosclerosis
or thickness or blockage of the coronary arteries [87]. The autonomic nervous system
(ANS) regulates several systems, including cardiovascular regulation baroreceptors or
blood pressure valves, which are found in the heart and the carotid artery [88]. When the
baroreceptors detect a change in the blood pressure, a signal is transmitted to certain brain
locations [89]. The ANS then transmits impulses to the heart, which regulates heart rate
and cardiac output [90]. Signals are also transmitted to the arteries, which cause them to
contract and regulate blood pressure [91]. Both CVD and PD have a strong link to diabetes,
advanced age, and male gender. Glucose metabolism, cellular stress, lipid metabolism, and
inflammation are all affected by genetic, environmental, and biological variables [92,93].
Stroke is the most prevalent medical issue among the elderly [94]. However, research on
the link between PD and stroke has yielded mixed results [24,95]. Strokes, such as cerebral
infarction, frequently coincide with PD pathology, according to autopsy studies, and indi-
viduals clinically diagnosed with PD frequently have a concurrent cerebral infarction [11].
Figure 3 shows the risk factor in PD patients responsible for myocardial infarction.

It is observed that PD patients exposed to a cold environment, isometric activity, the
morning hours, upright posture, and advanced age have enhanced sympathetic neuronal
discharges, which leads to increased myocardial oxygen demand [27,96]. Normally, auto-
nomic modifications aid homeostasis; however, in the presence of a separate pathological
condition, coronary arterial stenosis increases oxygen consumption given by coronary
blood flow, which exceeds the supply, resulting in ischemia and arrhythmias [97,98].

The effect of metabolic syndrome is always linked to a group of cardiovascular risk
factors that include abdominal obesity, elevated blood pressure (EBP), dyslipidemia, and
dysglycemia, all of which are linked to the development of CVD and a higher chance of
death from CVD and other causes [99].
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The ANS is part of the peripheral nervous system, which is a network of nerves that
runs throughout the body [100]. Respiration, heart function, blood pressure, digestion,
urine, sexual performance, pupillary response, and many other processes are controlled by
the ANS [101]. The parasympathetic nervous system and the sympathetic nervous system
are two subsystems of the ANS [102]. Most main organs are regulated by both the parasym-
pathetic and sympathetic nervous systems [103]. They frequently have opposing effects,
with the sympathetic nervous system stimulating a system while the nervous system is reg-
ulating it [104]. Figure 4 shows the relationship between PD and autonomic dysfunctions.
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Figure 4. The relation between Parkinson’s disease and Heart.

Table 1 represents various attributes that relate to the link between PD and CVD.
Orthostatic hypotension and cardiac abnormalities are the most prevalent medical issue
among the elderly.
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Table 1. The studies show the relation between Parkinson’s and Cardiovascular disease.

SN Citations Relation * ME PS Outcome TRE

1 Cuenca-Bermejo et al.
[105] (2021)

Cardiac changes
in PD LBBM NR

In PD patients with a lack of
sympathetic innervation in the heart,
cardiac abnormalities have also been

identified. Post-prandial hypotension,
supine hypertension, increasing blood
pressure variability, reduced heart rate

variability, and chronotropic
incompetence are also symptoms.

NR

2 Park et al. [106] (2020) PD with risk
of CVD

Population-based
cohort study NR

PD was linked to an increased risk of
cardiovascular disease. Physicians

must also pay attention to CVD
prevention in individuals with PD.

NR

3 Potashkin et al. [92]
(2020)

Relation between
CVD and PD LBBM 47

Inflammation, insulin resistance, lipid
metabolism, and oxidative stress are

among the basic mechanisms that both
CV disease and PD share. Physical
exercise and moderate coffee intake

are two modifiable risk variables that
are inversely related to both CV

disease and PD.

NR

4 Değirmenci et al. [83]
(2020)

Cardiac effect
of PD LBBM NR

Cardiac problems are frequent in PD
patients. PD is associated with CVD,
such as coronary artery disease, heart

failure, cardiac autonomic dysfunction,
heart failure, sudden death,

and hypertension.

Levodopa, Monoamine oxidase B
inhibitors, catechol-O-methyl

transferase inhibitors,
anticholinergic drugs, deep

brain simulations

5 Fanciulli et al. [91]
(2020)

Orthostatic
hypertension

in PD
LBBM NR

Syncope, unexplained falls,
lightheadedness, cognitive

impairment, blurred vision, dyspnea,
weariness, and shoulders, neck, or

low-back discomfort are all symptoms
of Orthostatic hypotension. They

appear when you stand up and go
away when you lie down.

Droxidopa, fludrocortisone,
clonidine, transdermal

nitroglycerin, nifedipine

6 Yan et al. [107] (2019)
Relation of

Carotid plaque
in PD

LBBM 68
As PD becoming worsening, the

thickness of carotid plaques
also increases.

NR

7 Scorza et al. [108]
(2018)

Cardiac
abnormalities

in PD
LBBM NR

Cardiovascular autonomic
dysfunction, cardiomyopathy,

coronary heart disease, arrhythmias,
conduction abnormalities, and sudden

cardiac death are all symptoms
of PD/PS.

NR

8 Günaydın et al. [85]
(2016)

CVD risk in PD
under levodopa

treatment
LBBM 65

Compared to healthy people, those
with PD who use L-dopa have

increased aortic stiffness and poor
diastolic performance. Homocysteine
levels in the blood may be a potential

pathophysiological factor.

NR

9 Huang et al. [92]
(2015)

plasma
cholesterol risk

in PD
LBBM 156

Statin usage has been linked to an
increased risk of PD, although larger
total cholesterol has been linked to a

decreased risk.

Statins

10 Vikdahl et al. [109]
(2015) CVD risk in PD LBBM 147

High blood cholesterol levels, smoking
habits, and a high body mass index
(BMI) have all been considered risk

factors for PD. A moderate degree of
physical exercise may help to lower

the risk of heart disease.

NR

11 Goldstein [47] (2014) Dystonia in PD LBBM 23

Orthostatic hypotension in PD can be
explained by the loss of sympathetic

nerves and the associated failure of the
baroreflex. During levodopa

medication, hypotension might
exacerbate after standing or after a

substantial meal.

NR

12 Liang et al. [31] (2015) Risk of CAD due
to PD LBBM NR

PD is related to an increased risk of
AMI; the mechanism needs to

be explained.
NR
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Table 1. Cont.

SN Citations Relation * ME PS Outcome TRE

13 Goldstein [110] (2014)
Cardiac

denervation
in PD

LBBM 40

In individuals with PD and neurogenic
orthostatic hypotension, cardiac

sympathetic denervation is almost
ubiquitous. Before the start of the

movement disorder,
baroreflex-cardiovagal failure and

cardiac sympathetic denervation can
occur, suggesting that neuroradiologic
testing might be used as a biomarker

for diagnosing presymptomatic or
early PD and monitoring responses to
possible neuroprotective therapies.

NR

14 Pan et al. [111] (2013)
Relation between
Serum Uric acid

with vascular PD
LBBM 160

Low uric acid levels are more likely to
develop PD, and the inverse

connection between uric acid and PD
severity was strong for males but weak
for women. There is no connection for

uric acid found in vascular PD.

NR

15 Wong et al. [97] (2012)
PD with Cardiac

Sympathetic
Denervation

LBBM 27 In IPD, there is a sign of cardiac
sympathetic denervation. NR

16 Czarkowska et al.
[112] (2010)

PD with
Cardiac response LBBM 53

With the progression of PD, cardiac
responses to orthostatic stress worsen.
The fall is caused by the detonation.

NR

17 Buob et al. [113] (2010)
Cardiac

dysfunction
in PD

LBBM 07

The chronotropic and contractile
responses mediated by catecholamines

rule out a functionally significant
sympathetic malfunction. Sympathetic

denervation maybe still not be
complete, and the surviving fibers are
enough to sustain autonomic control.

NR

18 Walter et al. [114]
(2008)

PD with
Cardiovascular

autonomic
dysfunction

LBBM NR
Other parkinsonian illnesses are

characterized by peripheral
autonomic dysfunction.

Somatostatin, levodopa

SN: serial number; * RELATION: Effect of PD on CVD; ME: method of evaluation; PS: patient size; TRE: treatment;
NR: not reported; AMI: acute myocardial Interaction; LBBM: laboratory based biomarkers.

3.2. The Relationship between Parkinson’s Disease with the Brain

The second leading cause of death in PD patients is stroke [115,116]. It is also the sixth
leading cause of long-term impairment [117]. Hemorrhagic stroke has been identified as a
primary cause of morbidity and mortality [118]. When cerebral blood flow is disrupted,
neuroinflammatory cascades are activated, which can affect brain metabolism and lead to
neuronal death [119]. Carotid stenosis occurs when the carotid arteries narrow, preventing
smoother blood flow [23]. The sudden rupture of a blood artery within the brain causes
obstructions in hemorrhagic stroke [120]. Stroke severely damages the brain and its cogni-
tive functions [121]. Cerebral infarction is intimately linked to PD due to cerebrovascular
and neurodegenerative disorders coinciding [122]. Although levodopa causes OH and
raised homocysteine, which may increase the risk of stroke, it remains the most effective
and essential symptomatic therapy for many people with PD [123].

L-dopa is still the first line and gold-standard treatment for PD [124]. The use of
L-dopa has been proven to raise homocysteine levels in the blood [125]. The conversion of
S-adenosyl methionine to S-Adenosyl-L-homocysteine and then homocysteine is linked
to the pathophysiological process of O-methylation of L-dopa to 3-O-methyldopa [47,110].
The PD patients under the L-dopa medication and homocysteine are at higher risk of
leading towards cardiovascular problems [126]. Ventricular arrhythmia is the most dan-
gerous adverse effect of levodopa in patients, which is uncommon to develop in a healthy
heart but a concern in individuals with myocardial irritability or ischemia [127]. Patients
who have had ventricular ectopic activity in the past should be treated with care and
electrocardiographically monitored [128].
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The dosage of levodopa should be progressively raised; if ectopic activity is detected,
the medicine should be withdrawn or combined with an antiarrhythmic treatment, the
most reasonable of which is adrenergic blockers [33]. Other antiarrhythmic medications
may be effective if these are contraindicated. Orthostatic hypotension, which is more
prevalent than symptomatic, should be monitored with regular blood pressure readings in
the standing posture, and exercising should be avoided [129]. The link between L-dopa
with stroke is shown in Figure 5. The most prevalent side effect of long-term levodopa
treatment is movement issues (motor fluctuations) [130]. Within 5 to 10 years, the majority
of persons who use levodopa experience these issues [131]. The impact of wear and tear is
the most common kind of levodopa-related motor fluctuations.

Metabolites 2022, 12, x FOR PEER REVIEW 10 of 31 
 

 

 

Figure 5. The relationship between L-dopa and stroke. 

When the effects of a single dose of levodopa do not last as long as they did before, 

this is known as a wearing-off time [132]. As the medicine’s effects wear off, control of 

motor symptoms deteriorates, and symptoms do not improve until the next dosage of 

levodopa is administered [133]. Based on the time of each pharmaceutical administration, 

these motor variations are straightforward to anticipate [134]. Dyskinesia is involuntary 

motions that are typically jerky or writhing that will affect the head, neck, limbs, and legs, 

as well as other areas of the body [135]. As a result of variable dopamine levels in the 

brain, “on” and “off” phases occur without warning [136]. The symptoms are comparable 

to those experienced as a result of the wearing-off effect, but they are more difficult to 

predict and manage. The patient may freeze during an “off” period, which comes unex-

pectedly over seconds or minutes [137]. During the “on” phases, on the other hand, un-

controlled movements may occur [138]. Treatment of PD by using L-dopa may modify 

the plasma metabolome implicated in phenylalanine and tyrosine metabolism, reducing 

bile acid increases in Parkinson’s disease [139]. Table 2 indicates the relationship between 

PD and stroke; most of the studies mention observations related to the risk associated with 

PD, which is stroke, traumatic brain injury, and heartrate variability. 

Table 2. The studies show the relationship between Parkinson’s and stroke. 

SN Citations Relation ME PS Outcome TRE 

1 
Li et al. [140] 

(2018) 

Stroke and CAD 

in PD 
LBBM 63 

Stroke risk was observed to be higher in peo-

ple with PD. Cerebral small vessel disease 

has been linked to moderate parkinsonian 

symptoms. 

NR 

2 
Studer et al. [90] 

(2017) 

Heart rate varia-

bility and skin 

resonance in PD 

LBBM 73 

Both SSR and HRV measurements are sensi-

tive in diagnosing ANS dysfunction, not only 

in the late stages of PD but also in the early 

stages and can be used to diagnose auto-

nomic derangement in PD patients. 

NR 

3 
Liu et al. [11] 

(2014) 
Stroke in PD 

Self-report-

ing a 

specialist 

for the diag-

nosis 

32 

Cerebral infarction is intimately linked to PD 

due to cerebrovascular and neurodegenera-

tive disorders coincide. Although levodopa 

causes OH and raised homocysteine, which 

may increase the risk of stroke, it remains the 

most effective and essential symptomatic 

therapy for many people with PD. 

NR 

4 
Becker et al. [18] 

(2009) 

Risk of stroke in 

PD 
LBBM NR 

Hyperhomocysteinemia might be a relation-

ship between PD and an increased risk of is-

chemic stroke. Homocysteine levels beyond a 

NR 

Figure 5. The relationship between L-dopa and stroke.

When the effects of a single dose of levodopa do not last as long as they did before,
this is known as a wearing-off time [132]. As the medicine’s effects wear off, control of
motor symptoms deteriorates, and symptoms do not improve until the next dosage of
levodopa is administered [133]. Based on the time of each pharmaceutical administration,
these motor variations are straightforward to anticipate [134]. Dyskinesia is involuntary
motions that are typically jerky or writhing that will affect the head, neck, limbs, and legs,
as well as other areas of the body [135]. As a result of variable dopamine levels in the brain,
“on” and “off” phases occur without warning [136]. The symptoms are comparable to
those experienced as a result of the wearing-off effect, but they are more difficult to predict
and manage. The patient may freeze during an “off” period, which comes unexpectedly
over seconds or minutes [137]. During the “on” phases, on the other hand, uncontrolled
movements may occur [138]. Treatment of PD by using L-dopa may modify the plasma
metabolome implicated in phenylalanine and tyrosine metabolism, reducing bile acid
increases in Parkinson’s disease [139]. Table 2 indicates the relationship between PD and
stroke; most of the studies mention observations related to the risk associated with PD,
which is stroke, traumatic brain injury, and heartrate variability.

3.3. The Relationship between PD and Combined CVD and Stroke

Many references have shown that the most important contributing factor be-
hind the development of PD leading to CVD is oxidative stress [144,145]. Figure 6
explains the biological relationship between PD and CVD. Excessive production of
reactive oxygen species (ROS) encourages mitochondrial dysfunction [146]. However,
it also triggers the process of atherosclerosis in various mechanisms, as supported by
Yu et al. [147] and Bennett et al. [148], which explains that there is a positive relation
between mitochondrial DNA damage and the formation of atherosclerosis. Further,
mitochondrial dysfunction also leads to damage to the heart via three different paths,
as represented in Figure 6.
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Path (A) explains the role of oxidative stress as a central step for selective degeneration
of dopaminergic neurons in substantial nigra of the brain [149]. This damage results in three
cardinal symptoms of PD such as resting tremor, rigidity, and loss of balance [150]. In path
(B), oxidative stress results in damage to pancreatic beta cells and increased formation of
Oxidation of low-density lipoprotein (OxLDL).

Table 2. The studies show the relationship between Parkinson’s and stroke.

SN Citations Relation ME PS Outcome TRE

1 Li et al. [140] (2018) Stroke and CAD
in PD LBBM 63

Stroke risk was observed to be higher
in people with PD. Cerebral small
vessel disease has been linked to

moderate parkinsonian symptoms.

NR

2 Studer et al. [90]
(2017)

Heart rate
variability and
skin resonance

in PD

LBBM 73

Both SSR and HRV measurements are
sensitive in diagnosing ANS

dysfunction, not only in the late stages
of PD but also in the early stages and
can be used to diagnose autonomic

derangement in PD patients.

NR

3 Liu et al. [11] (2014) Stroke in PD
Self-reporting a

specialist for
the diagnosis

32

Cerebral infarction is intimately linked
to PD due to cerebrovascular and

neurodegenerative disorders coincide.
Although levodopa causes OH and

raised homocysteine, which may
increase the risk of stroke, it remains

the most effective and essential
symptomatic therapy for many

people with PD.

NR

4 Becker et al. [18]
(2009)

Risk of stroke
in PD LBBM NR

Hyperhomocysteinemia might be a
relationship between PD and an
increased risk of ischemic stroke.

Homocysteine levels beyond a certain
threshold have been proven to increase
the risk of stroke and coronary artery

disease. vascular disease and
dementia, as well as the fact that

levodopa treatment is linked to both
with a rise in homocysteine

in the blood.

NR

5 Levine et al. [141]
(2009)

Traumatic brain
injury in PD LBBM NR

A potential technique for reducing
both physical and cognitive weariness
in people with neurologic diseases is

exercise training. In people with PD, a
cardiovascular exercise plan can help

to reduce overall weariness.

NR

6 Rickards [142] (2005) Stroke in PD NR NR

Depressive syndromes in chronic
neurological illnesses are common and

disabling. Their etiology is complex
and may be multifactorial in

individual patients.

NR

7 Mastaglia et al. [143]
(2002)

Prevalence stroke
in PD

Self-reporting a
specialist for
the diagnosis

100

Postmortem investigation, studies did
not directly compare our findings to

other studies of stroke-related
mortality and morbidity in the

PD population.

NR

SN: serial number; RELATION: Effect of PD on Stroke; ME: method of evaluation; PS: patient size; TRE: Treatment;
NR: not reported; SSR: sympathetic skin response; HRV: heart rate variability; OH: orthostatic hypotension;
LBBM: laboratory based biomarkers.

This further causes dysfunction of endothelial cells in blood vessels [151]. Damaged
endothelial cells increase the adhesive property by increasing levels of intercellular adhe-
sion molecule (ICAM) and vascular cell adhesion molecule (VCAM) [152]. These cause
a decrease in levels of (nitric oxide) NO and promote the formation of atherosclerotic
plaque [153]. Additionally, path (C) shows the relationship between mitochondrial dysfunc-
tion that decreases the aerobic capacity, which is a strong risk factor for CVD [154,155]. This
shared pathogenesis between PD and CVD is because of excessive ROS and mitochondrial
dysfunction [156].
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Figure 6. The biological link between PD and CVD. RoS: reactive oxides stress, ICAM: intercellular
adhesion molecule, VCAM: vascular cell adhesion molecule, DM: Diabetes mellitus, NO: nitric
oxide, OxLDL: oxidation of low-density lipoprotein; Up Arrow: depicts increase; Down Arrow:
depicts decrease.

3.4. The Role of the Shared Gene in Parkinson’s with CVD and Stroke

A deficiency in the PRKAG2 gene causes a right bundle branch block or anterior
hemiblock in these people [92]. Hyperhomocysteinemia trinomial has a relationship be-
tween PD and an increased risk of ischemic stroke [140]. High levels of homocysteine
have been linked to an increased risk of stroke, coronary artery disease, and dementia, and
levodopa medication has been linked to an increase in blood homocysteine levels [140].
Homocysteine promotes the generation of free radicals and inflammation [129]. Genetic
investigations, on the other hand, have demonstrated that PD and stroke share patho-
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physiology [157]. The gene phosphatase and tensing homolog deleted on chromosome 10
(PTEN) was found to control the formation of ROS in both PD and stroke models [158].
DJ-1 (PARK 7) is also a gene associated with premature hereditary PD [18].

The autonomic and, eventually, blood pressure and heart rate adaptations that ac-
company acute cardiovascular stresses daily are supported by the baroreflex system [159].
As a result, altered neuronal cardiovascular responses might result from poor baroreflex
function (i.e., lower sensitivity or gain) [160].

PD affects both the parasympathetic and sympathetic branches of the autonomic
nervous system, which are both controlled by the baroreflex system, and a thorough
knowledge of this important process is required [161]. In PD, arterial stiffness, a decreased
proportion of C1 neurons, and stimulation of non-C1 synapses, central alpha-synuclein
accumulation, cardiac autonomic nerve impingement, reduced muscular sympathetic nerve
activity, and lower norepinephrine release might all impact baroreflex function [162].

Hyperglycemia, insulin resistance, advanced glucose end degradation products, reac-
tive oxygen radicals, sphingolipid accumulation, oxidized LDL cholesterol buildup, and an
elevation in C-reactive protein are all symptoms of this condition [31]. The progression of
PD, coronary heart disease, diabetes, and high blood pressure is induced by these path-
ways [85]. Folded protein aggregates, alteration of protein disposal routes, mitochondrial
damage, oxidative stress, excitotoxicity, neuroinflammation, and abnormalities are all es-
sential pathogenic factors in Parkinson’s that influence patient hospitalization [112]. Blood
pressure fluctuations can occur even in the early stages of PD due to autonomic nervous
system malfunction [163]. Orthostatic hypotension, postprandial hypotension, nocturnal
hypertension, and supine hypertension are all symptoms of autonomic nervous system
failure [164].

In Section 3 we have seen the relationship of PD with CVD, brain, and combined CVD
with the brain. The biological link between PD and CVD with the brain. The effect of the
PD on CVD and stroke and hypothesized that the most fundamental cause of CVD/stroke
damage due to PD is cardiac autonomic dysfunction due to neurodegeneration, which
leads to heart failure and its edema.

In PD, there is always risk associated with CVD and stroke; hence early risk stratifi-
cation is very important to avoid mortality [159]. AI systems are already implemented to
predict the risk of CVD, stroke, and Parkinson’s but individually; hence there is scope to
develop an integrated AI model for early risk stratification of CVD and stroke complications
in PD patients. The further section explains the role of AI-based systems for CVD/stroke
risk assessment and possible architecture for PD patients.

4. Machine Learning-Based System for CVD/Stroke Risk Assessment for PD Patients

Machine learning has been a powerful paradigm since it uses a knowledge-based
model for building the training system. Recently, there have been attempts to design
ML systems covering several applications such as diabetes [59,60,165], neonatology [166],
gene [167,168], coronary artery disease risk stratification [169,170], carotid plaque classi-
fication [171], cancer imaging such as thyroid [61,172,173], breast [174], ovarian [64,175],
prostate [63,176], etc. The second key benefit of ML is its ability to handle the nonlinearity
between the combination of risk factors (or covariates) and the gold standard. This was
recently shown for cardiovascular risk stratification [30,177–180].

The HDL algorithm also plays an important role in handling the nonlinear feature
extraction. HDL consists of the concatenation of two solo deep learning models, or some-
times HDL, also referred to as a concatenation of solo DL with an ML model. HDL has
shown to have superior performance compared to solo DL and solo ML models [181–185].

These risk factors are the amalgamation of (i) PD covariates; (ii) conventional labora-
tory and office-based covariates; (iii) atherosclerosis covariates; and (iv) current medication
uses as covariates. The gold standard is either heart failure (cardiovascular events) or
a stroke (cerebrovascular events). Figure 7 shows the AI model for CVD/stroke risk
assessment using PD.
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Figure 7. ML model for CVD/stroke risk assessment using Parkinson’s disease.

The conventional covariates are the risk factors which are a combination of office-based
biomarkers (OBBM), laboratory-based biomarkers (LBBM), carotid image-based pheno-
types (CUSIP), and medication usage (MedUSE). CUSIP is the image-based phenotype
derived using angiographic screening of the blood vessels [65].

Due to cost reasons, one can prefer non-invasive imaging of the carotid arteries
for atherosclerosis imaging [71] with noise-reduced imaging [186,187]. Segmentation of
the carotid walls helps in the identification of the plaque built-up [66,188]. The review
demonstrates how PD leads to the worsening of CVD and stroke in a gradually sequential
activity. We suggest a method for using AI to aid in the detection of CVD/stroke risk
stratification in the PD framework. Tables 3–5 represent studies that use AI for the detection
of CVD, stroke, and PD, respectively.
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Table 3. The table shows the prediction of CVD by using AI.

SN Citations IC DS GT FE TOC ML vs. DL ACC % AUC

1 Suri et al. [189]
(2022) OBBM, CUSIP 117 CVD,

Bias NR NR ML NR NR

2 Kandha et al. [190]
(2020) OBBM, LBBM 346 Death DCNN NB, SVM,

KNN, DT DL 83.33 0.833

3
Jamthikar et al. [30]

(2020) OBBM, LBBM, CUSIP 202 CVD SVM NR ML 92.53 0.92

4
Skandha et al. [191]

(2020) OBBM, LBBM 246 Stroke 11 Models NR HDL 98.30 0.983

5
Saba et al. [192]

(2020) OBBM, LBBM, CUSIP 246 Death 6 Models NR HDL 89.00 0.898

6
Jamthikar et al. [177]

(2019) OBBM, LBBM (US) 395 CVD PCA RF ML 95.00 0.80

7
Biswas et al. [193]

(2018) OBBM, LBBM (US) 407 Stroke,
Diabetes NR CNN DL 99.61 0.99

SN: serial number, IC: input covariates, DS: data size, GT: ground truth, OBBM: office base biomarker, LBBM: labo-
ratory based biomarkers, FE: feature extraction, TOC: type of classifier, ACC: percentage accuracy, US: ultrasound,
NR: not reported.

Table 4. The table shows the prediction of stroke by using AI.

SN Citations IC DS GT FE TOC ML vs. DL ACC % AUC

1
Soun et al. [194]

(2021) LBBM (CT) 209 Stroke NN AlexNet DL 96.09 0.96

2 Reva et al. [195]
(2021) OBBM, LBBM 200 Stroke,

CT NB DT, RF,
SVM ML 85.32 NR

3 Murray et al. [9]
(2020) OBBM, LBBM 341 LVO,

Stroke RF CNN HDL 85.00 NR

4 Mouridsen et al.
[196] (2020) OBBM, LBBM, CUSIP 16 Stroke,

MRI NR CNN DL 74.00 0.74

5 Yu et al. [147] (2020) OBBM, LBBM (EMG) 287 Stroke,
EMG SVM RF, LSTM ML 98.33 0.98

6 Ain et al. [197]
(2020) OBBM, LBBM 130 Stroke,

non-stroke NB NB ML 84.00 NR

7
Badriyah et al. [198]

(2020) OBBM (CT) 29 Stroke NB DT, RF,
SVM HDL 94.30 NR

SN: serial number, IC: input covariates, DS: data size, GT: Gground truth, OBBM: office-based biomarker,
LBBM: laboratory based biomarkers, FE: feature extraction, TOC: type of classifier, ACC: percentage accuracy,
CT: computer tomography, EMG: electromyography, MRI: magnetic resonance imagining, NR: not reported.

Table 5. The table shows the prediction of Parkinson’s by using AI.

SN Citations IC DS GT FE TOC ML vs. DL ACC % AUC

1 Bikias et al. [199]
(2021) LBBM (FoG) 18 PD vs.

Non PD SVM CNN DL 90.00 NR

2 Pramanik et al. [200]
(2021) LBBM (Voice) 252 PD vs.

Non PD NB RF ML 95.00 NR

3 Borzì et al. [201]
(2021) OBBM, LBBM (FoG) 11 PD vs.

Non PD RF NB ML 84.10 NR

4 Aich et al. [202]
(2020)

OBBM, LBBM
(FoG) 20 PD vs.

Non PD RF SVM, RF,
KNN ML 97.35 0.74

5 Pramanik et al. [203]
(2021) LBBM (Voice) 169 PD vs.

Non PD NB SVM, RF ML 78.97 0.78

6 Zahid et al. [204]
(2020) LBBM (Voice) 50 PD vs.

Non PD SVM RF HDL 99.1 NR

7 Nissar et al. [205]
(2019) LBBM (Voice) 188 PD vs.

Non PD NB XGBoost ML 92.76 NR

SN: serial number, IC: input covariates, DS: data size, GT: ground truth, OBBM: office-based biomarker, LBBM: lab-
oratory based biomarkers, FE: feature extraction, TOC: type of classifier, ACC: percentage accuracy, AUC: Area
Under Curve, FoG: freezing of gait, NR: not reported.
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5. Critical Discussions
5.1. Principal Findings

The first study is the symptomatic observations of CVD and stroke risk stratification
in the environment of PD and further investigates the risk factors and gold standards for
PD patients having CVD and stroke risk stratification. The effects of PD on the brain and
heart are widely known. The review demonstrates how PD leads to the worsening of CVD
and stroke in a gradual sequential activity. We suggest a method for using AI to aid in the
detection of CVD/stroke risk stratification in the PD framework. As a result, in addition to
PD screening, as a low-cost approach, we can use gold standard coronary artery scans as
covariates for the stroke risk stratification to prevent worsening of CVD/stroke conditions
in PD patients. Effective monitoring of these patients can be conducted with the help of an
AI-based model, and long-term consequences for the patients can be avoided.

Machine learning and deep learning aid in the more accurate risk assessment of CVD
and stroke in the PD framework. The model may be taught in such a way that it requires no
human involvement and produces speedy results. In today’s healthcare systems, this shows
to be a revolution, especially in the CVD and stroke risk stratification in the PD framework.
Clinicians can use the vascular and cerebrovascular data-based outcome of the AI model to
counsel PD patients and advise them on the risk stratification of Cardiovascular/stroke
that comes with it.

Our research shows that PD patients, particularly those with high-risk CVD and stroke,
should choose CVD and stroke risk assessment methodologies. Patients with PD benefit
from carotid imaging for the diagnosis of heart conditions. Ultrasound-based imaging
techniques have been shown to be the most convenient for carotid imaging, according to
our findings. Furthermore, AI-based algorithms are the ideal choice for the detection of
CVD/stroke risk stratification in the PD framework. All of these indicators should thus be
followed to diagnose and treat the condition as soon as possible.

5.2. Benchmarking

After an analysis of different studies, there were a few research articles that discussed
the connection between PD with CVD, PD with stroke using OBBM, LBBM, CUSIP, and
MedUse. Few of the articles explain the role of AI in the diagnosis and risk stratification
of CVD, stroke, and PD but separately. Nevertheless, no single article explains the stroke
and CVD risk stratification in PD patients by using AI. Table 6 represents a comparative
analysis of the different studies.

Table 6. Comparative analysis of studies CVD and stroke risk stratification in PD Patient. Y: yes,
N: no, PD: Parkinson’s disease, CVD: cardiovascular Disease, AI: artificial Intelligence.

SN Citations Year PD CVD Stroke AI COVID-19

1 Li et al. [70] 2018 Y N Y N N

2 Jamthikar et al. [18] 2020 N Y N Y N

3 Mouridsen et al. [122] 2020 N N Y Y N

4 Bikias et al. [119] 2021 Y N N Y N

5 Reva et al. [120] 2021 N N Y Y N

6 Bermejo et al. [72] 2021 Y Y N N N

7 Pramanik et al. [121] 2021 Y N N Y N

8 Suri et al. (Proposed) 2022 Y Y Y Y Y

Bikias et al. [199] mentioned that freezing of gait (FoG) is a mobility issue that affects
people with PD in their latter stages. Despite the PD patient’s best efforts, it causes
the inability to walk, leading to a loss of coordination that increases the risk of falls
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and accidents and hurts the PD patient’s quality of life. Stress, emotional stimulation,
and multitasking have all been linked to the onset of FoG episodes, with the patient’s
functioning and self-confidence worsening with time. By examining inertial measuring
unit data, this study provides a non-invasive way of detecting FoG events. Deep FoG
achieves 83%/88% sensitivity/specificity for leave one out cross-validation and 86.5%/90%
sensitivity/specificity for 10-fold CV schemes, respectively, according to experimental data.

Another study by Reva et al. [195] explained the first AI-based algorithms capable
of reliably and effectively measuring collateral flow in patients with AIS described in
this paper. This automated technique for assessing collateral filling might help clinical
decision-making for determining reperfusion-eligible patients by streamlining clinical
workflow, reducing bias, and assisting in clinical decision-making. In patients with ma-
jor artery blockage acute ischemic stroke who receive reperfusion treatment, collateral
circulation is linked to a better functional prognosis. Because of the complicated neuro
vasculature, assessing collateral flow may be time-consuming, subjective, and challenging.
Bermejo et al. [105] commented that Parkinson’s autonomic dysfunction is a prevalent
non-motor symptom. The majority of dysautonomic disorders are caused by changes in the
autonomic nervous system’s peripheral nerves, which include both the sympathetic and
parasympathetic nervous systems. Cardiovascular impairment is common in patients with
PD due to the degradation of sympathetic nerve cells and neurons. This unpleasant side
effect restricts the therapeutic use of L-dopa in elderly patients with PD and can increase
the frequency of hospitalizations. As a result, defining the cardiac characteristics associated
with PD is critical for monitoring the heart status in parkinsonians. Furthermore, the article
by Pramanik et al. [200] described two recent decision forest algorithms, Systematically
Developed Forest and Decision Forest by Penalizing Attributes, with the widely used
Random Forest to create three distinct Parkinson’s detection schemes with the least number
of decision trees. The proposed decision forests, SysFor, and forest, as well as the widely
used Random Forest, have been used as Parkinson’s detectors. The suggested Parkinson’s
detection approach uses incremental decision trees and training examples, which is a
unique contribution to the area of Parkinson’s detection. Mouridsen et al. [196] showed
non-contrast computed tomography (CT), and magnetic resonance imaging (MRI) can be
used to differentiate between ischemic and hemorrhagic stroke, which is difficult to identify
solely on clinical symptoms. Although the sensitivity of MRI is higher in the acute situation,
hypodensity on CT and DWI hyperintensity on MRI identify permanently injured tissue.
Angiographic and perfusion imaging sequences can detect a major artery obstruction and,
in combination with perfusion imaging, can identify individuals who should be treated
with endovascular treatment.

In conclusion, neither study, to our knowledge, has offered such additional insight
into multiple approaches to illnesses that are needed for CVD/stroke risk stratification in
the PD framework.

5.3. A Special Note on PD-Stroke Hypothesis

Vascular Parkinsonism is caused by a stroke that affects the substantia nigra of the basal
ganglia [206]. Damage is mostly caused by a loss of blood circulation to certain areas of
the brain, as it is with other strokes [207]. Small vessel strokes are the most common type
of stroke associated with Parkinsonism because they are not usually fatal. Small vascular
strokes can be diagnosed with diagnostic methods such as a CT scan or an MRI of the
brain [208]. The symptoms of vascular Parkinsonism are usually brought on by a series of
minor strokes [209]. Small artery strokes can sometimes lead to vascular dementia, which
is a kind of dementia [210]. As a result, patients with vascular Parkinsonism are more likely
to develop vascular dementia. The most hazardous side effect of anti-PD drug levodopa
in patients is atrial arrhythmias, which is uncommon in a healthy heart but a problem in
those with myocardial instability or hypoxia [211].
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5.4. A Special Note on PD-CVD Hypothesis

Due to the failure of ANS, cardiomyopathies are relatively uncommon in people who
have PD [212]. These individuals have an increase in left ventricular mass, left ventricular
pressure, left atrial volume, concentric remodeling, and diastolic dysfunction; such con-
dition can lead to heart failure, which may develop at a later stage [213]. PD is linked to
atherosclerotic risk factors, including hypertension and diabetes. These individuals are
more likely to develop coronary artery disease [106]. PD is associated with an increase in
mortality due to vascular disease, and sudden cardiac death is an uncommon complication
of PD [214]. Conduction defects, hypertonia, ventricular arrhythmias (due to the medica-
tions employed), and cardiomyopathies are all the causes of abrupt cardiac death [215].
These variations in blood pressure can be detected in the early stages of PD. Hypertension
is linked to fast dopaminergic neurodegeneration, and motor symptoms were observed in
PD. Diastolic inadequacy might be detected as an early indicator of autonomic dysfunction
in PD [112].

5.5. A Short on Contrast-Based Imaging for ORGAN

By injecting a radioactive tracer, [121] meta-iodo-benzyl-guanidine, into the sympa-
thetic nervous system of the human heart, it is feasible to visualize it (MIBG) [216]. The
innovation of this technique, known as MIBG cardiac imaging, holds a lot of promise
as a test to confirm the diagnosis of PD (a state in which MIBG detection in the heart is
diminished or absent), to identify those who are at risk of developing PD in the future, and
to differentiate PD from related disorders [217]. MIBG cardiac imaging is still considered
an experimental approach for detecting PD and is not currently in use as a diagnostic
instrument [218].

In a recent study, the loss of the sympathetic nerves of the heart was chemically caused
in monkeys to resemble the alterations seen in PD [219]. The cardiac system was then
scanned with a variety of new-generation radioactive tracers that bind to inflammation
and oxidative stress indicators [220]. This model system can be used to investigate the
molecular changes that occur when the sympathetic nerves of the heart are lost, as well as
to follow the cardiac system’s response to treatments.

5.6. A Short Note on the Effect of COVID-19 Infection on PD

Exacerbations of parkinsonian symptoms are frequently caused by COVID-19 infec-
tions [221]. Although increased cerebral dopamine metabolism, pharmacologic alterations,
and direct effects of endotoxins have been observed, the mechanism for this remains un-
known [222]. Motor impairment may remain beyond this phase of systemic inflammation,
even if it is typically reversible. PD patients having COVID-19 is a severe illness that has
a direct negative impact on PD motor symptoms [223]. According to one research, motor
and non-motor symptoms worsened in PD patients infected with COVID-19, either before
or after infection. Furthermore, indirect effects such as social isolation, pharmacologic
effects, abrupt shifts in schedule, the influence of fear and depression, and continuous lack
of mobility are all likely to have negative effects on motor and non-motor symptoms as
well as the quality of life in people with PD [2].

5.7. A Short Note on Bias in AI System

Almost 18 million deaths occur every year from CVD/stroke around the world. PD
affects about 1% of persons over the age of 60 and 5% of adults over the age of 85 [224].
PD symptoms usually strike people once they reach the age of 60. Early and precise
diagnosis of CVD/stroke risk stratification in PD is critical for lowering these fatality
rates. As a result, to enhance the prediction of CVD/stroke risk stratification in PD, AI
systems were introduced as an alternative to LBBM, OBBM, and MedUSE based existing
tools. However, there are certain issues with AI systems, since they sometimes focus
solely on accuracy, neglecting clinical and scientific validation [75], not matching the
gold standard and ground truth, and inaccurately calculating the disease severity ratio.
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It overemphasizes AI system accuracy while underemphasizing AI system validity. It
makes the AI system to be biased [225]. It is also important to note that the database
contains particular geographical patient characteristics; as a consequence, the model may
provide inaccurate test findings for various continents [226]. As a result, it is critical to
identify each AI system’s bias in addition to enhancing CVD/stroke risk stratification in
PD [190].

5.8. Strengths, Weakness, and Extensions

We provide further help to the existing healthcare systems by establishing the link
between PD with CVD and stroke. Prevention is indeed preferable to treatment. With
awareness of the link between PD with CVD and stroke, as well as low-cost screening
utilizing AI-based algorithms, patients can be not only treated but also prevented from
developing the complicated condition. One constraint we see is that neither protocol has
been built for treating PD patients with CVD and stroke as covariates, and it is critical to
shedding more light on this. Still, there is no clear hypothesis in the AI system to predict
the risk of CVD and stroke risk stratification in PD disease, but many AI models solve the
problem of diagnosis of the CVD, stroke, and PD diseases separately. The unavailability
of the multi-center data on PD with CVD and stroke as comorbidity is also a challenge.
With the continuing pandemic, it is critical to consider how the SARS-CoV-2 virus might
affect both of the targeted diseases. In the future, we anticipate more systematic reviews on
PD-based RoB with comorbidities focusing on the SARS-CoV-2 virus, CVD, and stroke. In
addition, in the future, we would like to express how the role of big data is important to
understand for minimizing the generational bias in AI models.

6. Conclusions

The importance of CVD and stroke risk stratification in PD patients were discussed in
this systematic review. We also demonstrated how PD complications can lead to vascular
stroke and cerebral stroke. The concept that PD might aggravate CVD and stroke was
underlined in this review. As a result, detecting CVD problems in PD patients is critical.
Carotid imaging was also shown to be a low-cost, non-invasive alternative to conventional
imaging modalities for CVD screening in PD patients. This low-cost B-mode ultrasonogra-
phy will also be useful for the characterization of plaque tissue in PD patients, providing
a crucial additional understanding of CVD and stroke risk stratification in PD patients.
Furthermore, we demonstrated that AI-based methods are effective in predicting CVD and
stroke risk stratification in PD patients. The AI-based feasible model for CVD and stroke
stratification in PD patients was presented. Finally, we comment on the roles of PD with
CVD and stroke in the COVID-19 paradigm, as well as the function of AI in this framework.
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Glossary

Acute Stroke A stage of stroke that starts at the beginning of symptoms and
lasts for a few hours after.

ANOVA Is an analysis tool used in statistics that splits an observed
aggregate variability found inside a dataset into two parts:
systematic factors and random factors.

Arrhythmia An abnormal heartbeat.
Arteriosclerosis A disease process, commonly called “hardening of the arteries,”

includes a variety of conditions that cause artery walls to
thicken and lose elasticity.

Artificial Intelligence Artificial intelligence (AI) is intelligence demonstrated by
machines, as opposed to the natural intelligence displayed by
animals, including humans.

Atherosclerosis A disease in which plaque builds up inside your arteries. This
narrows the arteries and blocks blood flow to the brain, which
increases the risk of a stroke.

Autonomic nervous system The part of the body’s complex system of nerves that controls
the involuntary activity of some of the internal organs, such as
breathing or heartbeat.

Basal ganglia These are structures located deep in the brain that are responsible
for normal movement, such as walking. The basal ganglia are
made up of three main parts, the caudate nucleus, the putamen,
and the globus pallidus.

Bradycardia Abnormally slow heartbeat.
Bradykinesia Slowing down of movement. It is a major symptom of Parkinson’s.
Cardiac arrest The stopping of the heartbeat, usually because of interference

with the electrical signal.
Cardiovascular About the heart and blood vessels that make up the

circulatory system.
Carotid artery An artery located on either side of the neck supplies the front

part of the brain with blood.
Cerebellum Part of the brain is involved in the coordination of movements.
Cerebral cortex The largest part of the brain is responsible for thought,

reasoning, memory, sensation, and voluntary movement.
Cerebrovascular Disease One or more diseases are caused by blood flow (circulation)

problems, such as blood flow restriction or a blockage or clot,
in vessels that supply blood to the brain.

Chorea A type of abnormal movement or dyskinesia, characterized by
continuing, rapid, dance-like movements. May result from high
doses of levodopa and/or long-term levodopa treatment.

Cognitive Impairment Difficulty with thinking abilities such as paying attention,
memory, communication, and problem-solving.

Cogwheel rigidity Stiffness in the muscles, with a jerky quality, when arms and
legs are repeatedly moved.

Congestive heart failure A condition in which the heart cannot pump all the blood
returning to it, leading to a backup of blood in the vessels and
an accumulation of fluid in the body’s tissues, including the lungs.

Deep Learning Are a type of machine learning and artificial intelligence (AI)
that imitates the way humans gain certain types of knowledge.

Dementia The loss of some intellectual abilities is characterized by a loss of
awareness and confusion.

Dopamine A chemical produced by the brain; assists in the effective
transmission of messages from one nerve cell to the next.
People with Parkinson’s have decreased amounts of the
chemical in the basal ganglia and substantia nigra, two
structures located deep in the brain. Dopamine coordinates the
actions of movement, balance, and walking.
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DVT (Deep Vein Thrombosis) A blood clot that forms in a vein deep in the body. It can cause
a potentially life-threatening complication if the clot detaches
and moves to the lungs resulting in a blockage known as a
pulmonary embolism (PE).

Dysarthria Difficulty saying words clearly due to problems with muscle
strength and coordination.

Dysarthria Speech difficulties due to impairment of the muscles associated
with speech.

Dyskinesia Abnormal muscle movements. These may appear as a side
effect of long-term drug treatment in Parkinson’s and may
worsen in response to stress.

Dysphagia Difficulty with swallowing.
Edema Swelling is caused by fluid accumulation in body tissues
Embolic Stroke A stroke is caused by an embolus (a free-floating mass traveling

through the bloodstream). The embolus may be a blood clot
(thrombus), a ball of fat, a bubble of air or other gas
(gas embolism), or foreign material.

Hemorrhagic Stroke Sudden bleeding into or around the brain. It is also called a
brain hemorrhage or brain bleed.

Heredity The genetic transmission of a particular quality or trait from
parent to child.

High-density lipoprotein (HDL) Also known as “good cholesterol.” HDL helps move the
“bad cholesterol” from the arteries back to the liver; thus, it can
break down and leave the body.

Hypertrophy Enlargement of tissues or organs because of increased workload.
Hypoxia A state of decreased oxygen delivery to a cell thus that the

oxygen falls below normal levels.
Intracerebral Hemorrhage (ICH) A type of stroke occurs when a vessel within the brain leaks

blood into the brain.
Ischemic Stroke Damage to the brain is caused by a lack of blood flow, usually

from a clot.
Levodopa A drug containing a form of the important brain chemical

dopamine commonly used to treat symptoms of Parkinson’s
disease. In combination with carbidopa, it is called Sinemet;
combined with benserazide, it is called Prolopa.

Lewy body Brain cells have abnormally pigmented spheres inside them.
They are found in the damaged parts of the brain in people with
Parkinson’s disease.

Low-density lipoprotein (LDL) Also known as the “bad cholesterol”; a compound that carries
most of the total cholesterol in the blood and deposits the excess
along the inside of arterial walls.

Machine learning Machine learning is a method of data analysis that automates
analytical model building.

Myocardial infarction A heart attack. The damage or death of an area of the heart
muscle (myocardium) resulting from a blocked blood supply to
the area. The affected tissue dies, injuring the heart. Symptoms
include prolonged, intensive chest pain, and a decrease in blood
pressure that often causes shock.

Navi byes Naive Bayes classifiers are a family of simple “probabilistic
classifiers” based on applying Bayes’ theorem with strong
(naive) independence assumptions between the features .

Principal Component Analysis Is the process of computing the principal components and using
them to perform a change of basis on the data, sometimes using
only the first few principal components and ignoring the rest.

Pulmonary Embolism (PE) A blockage of an artery in the lungs by a substance that has
traveled from elsewhere in the body through the bloodstream.
Severe cases can lead to passing out, abnormally low blood
pressure, and sudden death.
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Random forests Is an ensemble learning method for classification, regression,
and other tasks that operates by constructing a multitude of
decision trees at training time?

Resting tremor Shaking occurs in a relaxed and supported limb.
Rigidity Muscular stiffness is common in people with Parkinson’s disease.

It is characterized by a resistance to movement in the limbs.
Stenosis Narrowing of an artery due to the buildup of plaque

within the artery.
Stroke Occurs when the blood supply to part of the brain is suddenly

interrupted or when a blood vessel in the brain bursts, spilling
blood into the spaces surrounding brain cells. There are two
types of stroke: ischemic (clot) or hemorrhagic (bleeding).

Support Vector Machine Supervised learning models with associated learning algorithms
that analyze data for classification and regression analysis.

Thrombosis The formation of a blood clot in one of the brain arteries of
the head or neck that stays attached to the artery wall until it
grows large enough to block blood flow.

Abbreviations
ACC American College of Cardiology
AHA American Heart Association
ANOVA Analysis of variance
ASCVD Atherosclerotic cardiovascular disease
ANS Autonomic Nervous System
AUC Area-under-the-curve
AI Artificial Intelligence
BMI Body mass index
CAD Coronary artery disease
CAS Coronary artery syndrome
CHD Coronary Heart Disease
CKD Chronic kidney disease
CT Computed Tomography
CUSIP Carotid ultrasound image phenotype
CV Cross-validation
CVD Cardiovascular disease
CVE Cardiovascular events
DA Endogenous Dopamine
DL Deep learning
DM Diabetes mellitus
EEGS Event-equivalent gold standard
EMG Electromyography
FH Family history
FoG Freezing of Gait
GT Ground truth
HTN Hypertension
HDL Hybrid deep learning
ICAM Intercellular Adhesion Molecule
VCAM vascular cell adhesion molecule
LBBM Laboratory-based biomarker
MedUSE Medication use
ML Machine learning
MRI Magnetic Resonance Imaging
MIBG Iodine-123 meta-iodobenzylguanidine
NPV Negative predictive value
NB Naive byes
NO Nitric Oxide
nOH Neurogenic orthostatic hypotension
Non-ML Non-machine learning
OBBM Office-based biomarker
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OH orthostatic hypotension
OxLDL Oxidation of low-density lipoprotein
QTc chaotic heartbeat
PD Parkinson Disease
PE Performance evaluation matrices
PPV Positive predictive value
PCA Principal Component Analysis
PTC Plaque tissue characterization
RA Rheumatoid arthritis
PR Period measured in milliseconds
RF Random forest
ROS Reactive Oxides Stress
RoB Risk of bias
ROC Receiver operating-characteristics
SCORE Systematic coronary risk evaluation
SMOTE Synthetic minority over-sampling technique
SVM Support vector machine
TPA Total plaque area
US Ultrasound
DNA Deoxyribonucleic acid
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