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A B S T R A C T   

COVID-19 has infected 77.4 million people worldwide and has caused 1.7 million fatalities as of December 21, 
2020. The primary cause of death due to COVID-19 is Acute Respiratory Distress Syndrome (ARDS). According to 
the World Health Organization (WHO), people who are at least 60 years old or have comorbidities that have 
primarily been targeted are at the highest risk from SARS-CoV-2. 

Medical imaging provides a non-invasive, touch-free, and relatively safer alternative tool for diagnosis during 
the current ongoing pandemic. Artificial intelligence (AI) scientists are developing several intelligent computer- 
aided diagnosis (CAD) tools in multiple imaging modalities, i.e., lung computed tomography (CT), chest X-rays, 
and lung ultrasounds. These AI tools assist the pulmonary and critical care clinicians through (a) faster detection 
of the presence of a virus, (b) classifying pneumonia types, and (c) measuring the severity of viral damage in 
COVID-19-infected patients. Thus, it is of the utmost importance to fully understand the requirements of for a fast 
and successful, and timely lung scans analysis. 

This narrative review first presents the pathological layout of the lungs in the COVID-19 scenario, followed by 
understanding and then explains the comorbid statistical distributions in the ARDS framework. The novelty of 
this review is the approach to classifying the AI models as per the by school of thought (SoTs), exhibiting based 
on segregation of techniques and their characteristics. The study also discusses the identification of AI models 
and its extension from non-ARDS lungs (pre-COVID-19) to ARDS lungs (post-COVID-19). Furthermore, it also 
presents AI workflow considerations of for medical imaging modalities in the COVID-19 framework. Finally, 
clinical AI design considerations will be discussed. 

We conclude that the design of the current existing AI models can be improved by considering comorbidity as 
an independent factor. Furthermore, ARDS post-processing clinical systems must involve include (i) the clinical 
validation and verification of AI-models, (ii) reliability and stability criteria, and (iii) easily adaptable, and (iv) 
generalization assessments of AI systems for their use in pulmonary, critical care, and radiological settings.   

1. Introduction 

In December 2019, the novel coronavirus, severe acute respiratory 
distress syndrome coronavirus 2 (SARS-CoV-2) [1], appeared in Wuhan, 
in the Hubei province of the People’s Republic of China. The disease 
caused by the virus was initially called novel coronavirus pneumonia 
(NCP) by the Chinese government [2]. Even though it has been argued 
that this disease is syndemic1 (has both biological and social factors) [3], 
it was subsequently renamed the coronavirus disease 2019 (COVID-19) 
by the World Health Organization (WHO). It is currently a global 
pandemic [4]. It is a respiratory disease that can lead to acute respira-
tory distress syndrome (ARDS) and eventually to death. As of December 
21, 2020, more than 77.4 million COVID-19 cases have been reported, 
causing 1.7 million casualties [5]. COVID-19 has a Ro value between 
2.43 and 3.10, meaning that it is highly contagious [6]. The colors in 
Fig. 1 (from white to dark red) show the number of cases reported per 
million of population worldwide. The eight countries with the highest 
mortality are the USA, Brazil, India, Mexico, the UK, Italy, France, and 
Spain [7]. 

Genetically, COVID-19 is closer to SARS-CoV-1 than to Middle East 
respiratory syndrome coronavirus (MERS-CoV). However, it differs from 
SARS-CoV-1 in the length of the incubation period, clinical severity, and 
transmissibility [8]. Despite government initiatives to implement social 
habits such as social distancing and wearing masks, and despite quar-
antining and non-pharmacological and preventive treatments for psy-
chophysical wellbeing, the global spread of COVID-19 has increased [9, 
10]. 

COVID-19 has unique imaging characteristics that constitute a visual 

identity when viewed through a radiologist’s lens. Furthermore, COVID- 
19 adversely affects organs other than the lungs [11,12]. Due to these 
circumstances, research on this topic has exploded, with nearly 72,000 
COVID-19-related articles published since December 2019 (see PubMed 
website [13]). This translates to an average of 2000 articles per week. 
Interestingly, more than 900 articles are on COVID-19 and artificial 
intelligence (AI); these articles cover the models of machine learning 
(ML), transfer learning (TL), and deep learning (DL) (see Fig. 2 (d)). It 
appears that AI can play a role in the characterization of ARDS in the 
lungs and the characterization and diagnosis of other parts of the body 
[14]. The topic of AI for ARDS characterization must be investigated 
carefully to help practitioners better manage viral COVID-19 pneumonia 
leading to ARDS. 

AI is involved in many facets of COVID-19 management, such as 
medical imaging, risk assessment, telemedicine, and patient follow-up 
[16]. Even though AI has penetrated into several fields of radiological 
imaging [17], such as classification of images into (a) controls, (b) 
community viral pneumonia, and (c) COVID-19 pneumonia [18–20], 
the question that remains unanswered is whether these models actually 
function the way the pulmonologists and critical care physicians want. 
For example, if the patient has a specific pre-existing disease, can an AI 
include this information into its knowledgebase and use it to more 
effectively correlate this comorbid condition, the age factor, and the 
grayscale patterns in lung scans with COVID-19 severity? Furthermore, 
there are other questions worth addressing, such as the following: (i) 
What kind of imaging modalities are useful for ARDS? (ii) What kind of 
image-based classifiers are most beneficial for detecting and classifying 
ARDS severity while also considering comorbidity, age group, and im-
aging characteristics? (iii) How can COVID-19 severity due to ARDS be 
measured? (iv) How should we estimate the survival of patients affected 
by ARDS? (v) How does a pre-existing disease or comorbidity affect the 
mortality from ARDS? (vi) What methods (new/hybrid) can be used to 
detect and classify the early stages of ARDS? All these issues must be 
addressed if valid diagnoses are to be given and if the therapeutic 

1 Quotation from Wikipedia [https://en.wikipedia.org/wiki/Syndemic]: “A 
syndemic or synergistic epidemic is the aggregation of two or more concurrent 
or sequential epidemics or disease clusters in a population with biological in-
teractions, which exacerbate the prognosis and burden of disease.” 
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applications of the AI framework are to be evaluated accurately. 
The most popular medical imaging tools used for lung imaging are 

ultrasound, X-rays, CT (see Fig. 2: (a) Hyper-echoic region of the COVID- 
19 lung, 2 (b) The infected region in the lung, and 2 (c) Segmented lung 
region), and a recently developed technique that combines PET and CT 
to visualize the lungs and their metabolic functions [21–23]. This study 
considers various schools of thought for AI-based solutions for 
COVID-19 lung severity classification. Specifically, this study considers 
machine learning (ML), transfer learning (TL), and deep learning (DL) 
techniques, and combination of these. It also discusses the crucial issues 
and concerns that ongoing AI-based COVID-19 research must tackle to 
help the medical community. 

This review makes the following contributions. (i) It is the first re-
view of its kind that explores the pathophysiological aspect of acute 
respiratory distress syndrome (ARDS) due to COVID-19. It explicitly 
discusses the deteriorating alveolar stages leading to the gas-exchange 
disorder. (ii) This study is the only one that links the derived comor-
bid conditions and ARDS from nearly fifty studies. These conditions 
include hypertension, diabetes, obesity, chronic kidney disease, car-
diovascular diseases, liver disease, hyperlipidemia, renal dysfunction, 
cancer, human immunodeficiency virus (HIV), lung disease, and cere-
brovascular disease. Furthermore, it computes the link between co-
morbidity, ARDS, and mortality. (iii) The review compares the AI 
techniques used to characterize lung diseases during non-ARDS times 
(pre-COVID-19) with those used in ARDS times (post-COVID-19). (iv) 
This is the first review of its kind that develops the seven different school 
of thought (SoT) types utilizing AI techniques to evaluate the COVID-19 
severity in the ARDS framework. (v) This is the only review that 
exclusively compares different imaging modalities for evaluating the 
lung conditions in ARDS. (vi) This is the first review of its kind that 
shows the evolution of AI design for personalized medicine by linking AI 
with ARDS having comorbidity. This is very useful for evaluating ARDS 
conditions in the COVID-19 framework. 

The layout of the study is as follows. The research strategy is pre-
sented in section 2. The pathophysiology of ARDS is described in section 
3. The effect of comorbidity with COVID-19 is analyzed in section 4. In 
section 5, AI architectures are divided into schools of thought (SoT). The 

practical aspect of AI for COVID-19 is explained in section 6. The critical 
discussion and conclusion are given in sections 7 and 8, respectively. 

2. Research strategy 

Fig. 3 shows the flowchart of our research strategy. We used four 
online research databases: PubMed, IEEE Xplore, ArXiv, and Web of 
Science. Initial screening used the keywords “COVID-19,” “coronavi-
rus,” or “ARDS,” with the modality terms “lung CT,” “X-ray,” or “ul-
trasound.” The search was augmented with terms “artificial 
intelligence,” “machine learning,” or “transfer learning,” or “deep 
learning,” resulting in 1557 articles. We excluded 115 duplicate articles 
and articles that did not deal with COVID-19 severity (including clas-
sification), resulting in 1442 articles. Finally, we selected the articles 
based on our subjective assessment of their relevance and novelty, 
resulting in 399 articles. Excluding irrelevant articles, such as those that 
did not discuss comorbidity, resulted in 242 articles. Records with 
insufficient data were removed, leading to 230 resources. This was then 
used in our narrative study, which used AI-based, comorbid-based, and 
pathophysiology-based articles. 

3. The pathophysiology of acute respiratory distress syndrome 

The prime route of SARS-CoV-2 virus communicability is through the 
nasal droplets and saliva of an infected person [19]. The SARS-CoV-2 
virus enters the alveolar type 2 cells (AT2 cells) by anchoring its viral 
spike proteins (S1 and S2) to the angiotensin-converting enzyme 2 
(ACE2) receptor [24] (Fig. 4). Mossel et al. have reported that the pre-
vious coronavirus (CoV or SARS-CoV-1) replicates more aggressively in 
AT2 cells than in alveolar type 1 cells (AT1 cells) in the lung [25]. There 
is an 80% genetic resemblance between SARS-CoV-1 and SARS-CoV-2. It 
has been shown via molecular pathways [26] that SARS-CoV-2 has a 
high potential for binding with AT2 cells in the lungs [27]. 

In the inflammatory phase (marked as 3), inflammatory mediators 
are secreted as a systemic inflammatory response to the infection of AT2 
cells by SARS-CoV-2 on the alveolar epithelium surface [28]. The 
secreted inflammatory mediators stimulate alveolar macrophage, 

Fig. 1. Total confirmed cases per million as of December 21, 2020 [15]. (Source: Center for Systems Science and Engineering (CSSE) at Johns Hopkins University, 
Maryland, USA.). 
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producing cytokines like IL-1, IL-6, and TNF-α. In turn, the elevated 
production of cytokines and chemokines results in a condition called a 
cytokine storm. The sequence of the systemic inflammatory response, 
the cytokine storm, and the failure of multiple organs significantly in-
fluences ARDS’s pathophysiology. These sequences can also be seen in 
all other viruses belonging to all CoV families (e.g., SARS-CoV-1 and 
MERS-CoV) [29,30]. This leads to the upregulation of trypsin. 

Furthermore, it damages the endothelial tight junction protein and 
the zonula occludens, disorganizing and weakening endothelial cells 
and increasing these cells’ vascular permeability to intravascular fluids 
[31]. In the dilatation phase (marked as 4), the cytokine storm causes 
endothelial barrier dysfunction. This is caused by the release of the cy-
tokines following a viral infection. In the edematous phase (marked as 
5), intravascular permeability leads to the diffusion of intravascular 
fluid (proteins, neutrophils, erythrocytes, and platelets) to the 
sub-alveolar and interstitial space, thereby causing diffused alveolar and 
interstitial exudates, as well as alveolar edema. At this point, one can 
observe radiological consolidations using lung CT as a diagnostic 
approach, and monitor the treatment prognosis [32]. Diffused alveolar 
and interstitial exudates and increased sub-alveolar edema are the 
hallmark features of ARDS [33]. 

During the alveolar collapsing phase (marked as 6), increased ten-
sion (due to the drowning of alveoli in the fluid accumulated in the sub- 
alveolar and interstitial space) causes alveolar collapse, which results in 
the disruption of gas exchange from alveoli [34]. The alveolar 

gas-exchange disorder (marked as 7) occurs because of the 
ventilation-to-perfusion mismatch between carbon dioxide and oxygen. 
This condition leads to hypoxemia and ARDS (marked as 8). This leads 
to increased mortality if left untreated [35]. 

4. Comorbidity and ARDS 

Comorbidities of COVID-19 in ARDS include (i) old age, (ii) 
ethnicity, (iii) hypertension, (iv) diabetes mellitus (DM), (v) elevated 
BMI, (vi) cardiac diseases, and (vii) respiratory disorders. Studies have 
shown that ARDS tends to be worse among older patients [36–38], Af-
rican Americans (Blacks in general) [39], and those suffering from hy-
pertension [36,40], diabetes [36,38,41], BMI [42–44], respiratory 
diseases [42], and myocarditis [45–47]. These comorbidities play a vital 
role in segregating AI models that can be independently trained for 
effective diagnosis and COVID-19 severity prediction. The selected co-
morbidity studies [48–101] were taken from https://pubmed.ncbi.nlm. 
nih.gov/. Fig. 5 shows the number of subjects with comorbidities 
enrolled in the ARDS-based studies. 

We used the following criteria during the selection process. The 
chosen keywords were hypertension, diabetes, obesity, chronic kidney 
disease, cardiovascular diseases, liver disease, hyperlipidemia, renal 
dysfunction, cancer, human immunodeficiency virus (HIV), lung dis-
ease, and cerebrovascular disease. The percentage of comorbidity sub-
jects is shown in the pie chart as depicted in Fig. 6. This was designed 

Fig. 2. Images of COVID-19 infection: (a) lung ultrasound (hyper-echoic region of the COVID-19 lung), (b) chest X-rays (the infected region in the lung), and (c) lung 
CT (segmented lung region; courtesy of Luca Saba, University of Cagliari, Italy). (d) The number of COVID-19 studies involving ARDS, ML, TL, DL, validation, data 
acquisition (DA), and 3-D imaging. 
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using the selected 48 studies. Note that these 48 studies were pure 
medical journals discussing the role of comorbidity (“pre-existing dis-
eases”) and “age groups”. Therefore, we decided to only consider these 
studies as a rationale and motivation for statistical data collection, 
which was likely to be helpful in the design of the innovative AI solu-
tions for COVID-19 severity diagnosis and monitoring. The two most 
important contributing factors to COVID-19 were diabetes and hyper-
tension, which together account for about 68%. The rest of the comorbid 
predictors were nearly the same, in the range of 4%–13%. The selected 
studies stated that a total of 14% deaths were due to comorbidities in the 
ARDS framework. This pie chart demonstrates that comorbidity plays a 
vital role in the mortality of each cohort. Fig. 7 shows the distribution of 
the death due to the age factor with at least one comorbidity in the 
cohort. The most affected age range is 66–69, with a total coverage of 
58% of the total cohort, followed by age >70 with total of 20% from the 
selected studies. 

All these subjects had COVID-19 with one or more of these comor-
bidities. These comorbidities all contributed to the worsening of COVID- 
19. Thus, each comorbidity represents a category of the cohort whose 
imaging characteristics (or grayscale features) are likely to be similar. 
Therefore, multiple knowledge-based AI systems can be developed for 
each comorbidity using independent training cohorts. Based on these 
independently trained systems corresponding to each comorbidity, lung 
scans be characterized and COVID-19 severity can be assessed. 

5. Artificial Intelligence architectures for ARDS characterization 
by school of thought 

Characterization Definition. The concept of the characterization of the 
diseases using AI has been adopted in nearly all medical imaging areas. 
This includes the AI’s role in pinpointing the disease, extracting the ROI 
of the disease, and automatically classifying the disease against binary 
or multiclass events. We have chosen machine learning and deep 
learning characterization systems that overlap and synchronize with 

ARDS frameworks. The idea of using this characterization system is to 
share the origination and innovation spirits derived for different mo-
dalities and for different organs or applications. Note that some of these 
are taken from our own group intentionally to show the role of tissue 
characterization using AI or disease characterization using AI models. 
These systems are the crux solutions for diversification, which are 
unique and not available elsewhere. We specifically listed these as a 
“disease-specific portfolio” as a “one-stop-shop” to focus the search for 
the young scientists who are particularly interested in knowing how 
ARDS paradigms are related to other organ paradigms. Lastly, the third 
advantage of this cluster is to directly approach our group should more 
intricate details are necessary for such parallel characterization systems. 
Examples of AI-based characterization can be seen in several other body 
and disease applications, such as brain [102–104], stroke [105–107], 
plaque vascular wall [108–110], arrhythmia [111], liver [112–114], 
coronary artery [115,116], prostate [117], ovarian [118,119], diabetes 
[120], thyroid cancer [121], skin cancer [122,123], heart [124–126], 
gene expression [127], and rheumatoid arthritis [128]. This character-
ization framework can be extended to the ARDS framework. 

Non-ARDS vs. ARDS. ARDS studies have started after December 
2019. On the other hand, lung segmentation and classification tech-
niques under the non-ARDS framework have existed for several years 
before the start of SARS-CoV-2. Some of the AI models used for non- 
ARDS lung data have been partially tried on ARDS lung data. For this 
reason, we have listed non-ARDS AI models against the ARDS AI models 
under three categories: segmentation, classification, and sub-regional 
applications (nodule, cancer, and tumor segmentation). This paper 
does not cover non-ARDS AI models or techniques. Table 1 shows the 
studies done in both non-ARDS and ARDS frameworks. The non-ARDS 
AI techniques were also applied to nodule, cancer, and tumor segmen-
tation [129–136]. Note that we excluded (a) lung cellular images and (b) 
animal studies by considering only human lungs. Further state-of-the-art 
2017–2020 studies were only considered for non-ARDS models, and 
validation and inter- and intra-observer variability studies were also not 

Fig. 3. The flowchart showing the research strategy.  
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Fig. 4. The pathophysiology of ARDS after COVID-19 infection, which consists of six phases: (i) inflammatory phase, (ii) dilatation phase, (iii) edematous phase, (iv) 
alveolar collapsing phase, (v) gas-exchange disorder, and (vi) hypoxemia. (Courtesy of AtheroPoint™, Roseville, CA, USA; reproduced with permission.) 

Fig. 5. The number of subjects enrolled in the ARDS-based studies that consider comorbidities.  
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considered in Table 1. 
It is essential to note that there are three typical components of an AI- 

based ARDS system: (a) segmentation of the lung region, (b) classifica-
tion component, and (c) COVID-19 severity measurement (see Table 2). 
For the ARDS framework in this narrative review, we have proposed and 
classified the literature based on architecture (or so-called school of 
thought (SoT)) (see Table 3). 

Definition of Schools of Thought and Their Relationship to AI Architec-
tures. The classification of the AI architecture has been central to 

different engineering applications. Imaging has been the most promi-
nent AI application. Recently, Biswas et al. [17] presented a class of AI 
architectures for medical imaging. In our current study we present 
several applications using different classes of architectures (SoT). Biswas 
also discussed the evolution of architectures in terms of the present and 
future of deep learning [16]. 

These architectures can use the manual or automated feature selec-
tion method. Typically, manual feature selection methods were used in 
the past, where the features were hand-picked and fed to the 

Fig. 6. Depiction of comorbidities collected from 48 studies.  

Fig. 7. Mortality due to the age factor (in years) with comorbidities in the cohort from the selected studies.  
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classification model during its learning and training process. These were 
older generation methods. In other words, this is an old school of 
thought. Since the evolution of the concept of mimicking the brain using 
a greater number of layers for filtering the features, deep learning 
emerged. The main characteristic of deep learning (DL) paradigms is the 
ability to compute millions of training parameters automatically. This is 
a more recently evolved subset of ML. These methods are another, more 
recent school of thought. Thus, the schools of thought are primarily 
defined by their foundational architecture. 

Although the AI industry is dominated by these two paradigms, it 
continues to look for alternatives. DL begins to look outdated, and more 
advanced architecture has started to emerge. For example, the chal-
lenges of DL during training have led to generating pre-trained weights 
to speed up and simplify the DL systems. This type of architecture is 
known as transfer learning. It is considered a more recent SoT and a 
classic in its category. In summary, the classification of the architectural 
has been synchronized more as a SoT based on the ingredients and 
components of the architecture. This is similar to the way segmentation 
of images many years ago was categorized into several architectures or 
SoT. For example, segmentation can be classified as region-based, con-
tour-based, or knowledge-based. The categories were then fused 
together to generate intermediate architectures. These were known as 
fused architectures, and they combined region and contour or region 
with knowledge, generating another architectural paradigm or SoT. This 

can be seen in the classic papers by Suri [176–178]. 
Therefore, a SoT is a synonym for architectural design, where the 

individual and fused architectures are each considered a SoT. Fused 
architectures have been developed by different groups around the globe 
and are presented in the literature. Thus, the SoT is a more refined 
version of an architectural design. In summary, the idea of the School-of- 
Thought it to make it more granular rather than being too binary. Some 
of our previous studies have used the school of thought concept. Please 
note the SoT are technically the same as the generations of architectures; 
however, they give more subtle differences. 

The AI models used in different SoT along with their salient features 
are listed below. 

SoT-1 is useful for obtaining a quantitative measurement of the 
extent of COVID-19 lung damage and classifying the lung within the 
binary and multiclass frameworks. Lung segmentation is automated 
without human intervention, using either commercial software, such as 
XMedCon [179], or AI techniques, such as threshold segmentation [180] 
or UNet-based segmentation [146]. The AI component is state-of-the-art 
or custom deep learning (DL) architecture. 

The purpose of SoT-2 is similar to that of SoT-1 (to quantitatively 
and categorically estimate COVID-19 severity). However, researchers 
have employed a hybrid architecture that is more complex than the 
architecture of SoT-1. 

Nevertheless, by blending multiple AI architectures (DL and ML), 
SoT-2 has generally achieved comparable accuracy and accomplished 
additional sub-goals (e.g., prognosis analysis). The disadvantage of SoT- 
2 is the time and effort required for the amalgamation and fine-tuning of 
discrete AI components. 

SoT-3 is used only to divide patients into two or more classes (e.g., 
COVID-19, non-COVID-19, and other kinds of pneumonia). The majority 
of the AI-based COVID-19 research follows SoT-3. Lung segmentation 
before classification is automated, just like in SoT-1. SoT-3 involves an 
end-to-end automated pipeline with the primary goal being classifica-
tion in one of several categories of pneumonia, including COVID-19. 
Because of this, it is faster (and often easier) to carry out research 
using SoT-3. The primary disadvantage of SoT-3 is that it offers few 
insights that healthcare professionals can apply to treat COVID-19- 
infected patients. For example, SoT-3 does not help quantify bio-
markers that represent the severity of the disease. 

SoT-4 involves the semi-automatic segmentation of lungs from 
radiography images by professionals before use for AI-related process-
ing. Multiple metrics are computed using an AI component that is a 
hybrid of various AI architectures. SoT-4 gives researchers the freedom 
to create a pipeline with the appropriate balance of accuracy, speed, and 
complexity, depending on the desired metrics. The disadvantage of SoT- 
4 is that designing the semi-automatic segmentation of lungs and the 
appropriate hybrid models takes a fairly long time. 

In SoT-5, researchers use automated lung segmentation, but they 
also use traditional machine learning (ML) models, hand-crafted feature 
engineering, and feature selection methods. The computed features are 
then used to compute biomarkers, which, in turn, are used to predict the 
severity of COVID-19 and to classify patients. Research belonging to 
SoT-6 uses automated segmentation with a hybrid model of DL and TL to 
produce a categorical metric for classifying patients. Finally, SoT-7 
research is similar to SoT-6, with the sole difference being that the 
transfer learning (TL) model is the primary component [181]. It contains 
two components: an offline system and an online system. Relevant fea-
tures are extracted manually by the researchers using radiography im-
ages. These features are then passed on to a classifier in an offline system 
for training. Once the offline system is trained, the training coefficients 
are transferred to the online classifier, which is then used for real-time 
classification and severity prediction. ML can also be effectively used 
to segment the lungs in medical images, as shown in Refs. [146,167]. An 
online ML-based COVID-19 risk prediction system is depicted in Fig. 8. 
This is very much along the lines of previous ML systems published by 
our group [165,182,183]. 

Table 1 
AI-based studies involved during Non-ARDS and ARDS periods. AI-based Non- 
ARDS: AI on ARDS lung data during pre-COVID-19. AI-based ARDS: AI on ARDS 
lung data postmarked December 2019 COVID-19 (post-COVID-19).  

Subsystems AI-based Non-ARDS AI-based ARDS 

Segmentation Characteristics Characteristics 
Watershed, region-based, 
contour-based, fusion-based, 
and model-based. 

FC-Densenet103, Unet, 
DenseNet, and DenseNet121- 
FPN. 

References References 
[129,137–146] [147–165] 

Classification Characteristics Characteristics 
Gray scale feature extraction 
and ML classifier, and model- 
based techniques. 

Resnet-50, CNN, SVM, 
ResNet101, VGG16, and 
VGG19. 

References References 
[166–170] [148,150–153,157–159, 

171–175] 
Joint 

Segmentation 
and 
Classification 

Characteristics Characteristics 
They use the same 
characteristics as adapted by 
segmentation and 
classification domain for AI- 
based Non-ARDS. 

They use the same 
characteristics as adapted by 
segmentation and 
classification domain for AI- 
based ARDS. 

References References 
[167,169,170] [148,150,151,154,156–159, 

162]  

Table 2 
Types of artificial intelligence architectures and severity index.  

SN AI Components and Attributes 

Lung 
Segmentation 

AI Component Severity Index 

Auto/Semi-Auto ML/DL/TL/ 
DLaML/DLaTL 

Categorical/Continuous/ 
Categoricala Continuous 

1 Auto DL Categoricala Continuous 
2 Auto DLaML Categoricala Continuous 
3 Auto DL Categorical 
4 Semi-Auto DLaML Categoricala Continuous 
5 Auto ML Categoricala Continuous 
6 Auto DLaTL Categorical 
7 Auto TL Categorical  

a Both technologies are present. 
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Table 3 
Clustering of multimodality artificial intelligence architectures and their salient features.  

SoT Reference Modality Imaging Highlight/Objective Architecture Description Performance 
Metrics 

SoT- 
1 

[147–153, 
229] 

CT [229]: [147, 
148] X-ray 
[149]: [151] LUS 
[150]: 

3-D [229]: 
[147,148] 2-D 
[149]: [150, 
151] 

Multiview fusion [229], Multi-view 
pyramid network with attention [147], 
training using human in loop [148], 
video-based real time prediction [150], end- 
to-end DL architecture for semi quantitative 
prediction COVID- 19 severity [151] 

Resnet50 [229], Custom CNN with attention 
[147], VB-Net [148], commercial deep 
learning system by Lunit Inc [149], Spatial 
Transformer Net- work [150], ensemble of 
multiple networks (Backbone – ResNet, VGG, 
DenseNet, Inception; Segmentation- UNet, 
UNet++; Alignment- Spatial Transformer 
Network; Scoring Head-Feature Pyramid 
Network; Custom Network) [151] 

ACC [229]: 
[147,148,150, 
151] 
AUC [229]: 
[147] 
Sensitivity 
[229]: [149, 
150] 
Specificity 
[229]: [149] 
Others [148]: 
[149–151] 

SoT- 
2 

[152,153] CT [152]: [153] 3-D [153]: Biomarker based model [152], model for 
severity in 3-D lung abnormalities [153] 

Resnet34 with logistic regression [152], 
Dense UNet [153] 

AUC [152]: 
X-ray: LUS: 2-D [152]: Others [152]: 

[153] 
SoT- 

3 
[154–156, 
171,173, 
174]  

3-D [154]: 
[173] 
2-D [171]: 
[155–157,174]   

ACC [171]: 
[155,156,173, 
174]  

3-D Convolution Network [154], Resnet50 [154], Custom CNN [157] 
CT [154] multi-objective differential [157,171,173], DenseNet [155] AUC [154]: 

[155,156,173, 
174] 

[155,171] evolution based CNN [171], comparison of 
ten CNNs [156], 

(AlexNet, VGG-16 Sensitivity: 
[154,155,171] 

[156,173] weakly supervised DL model [173], 
truncated InceptionNet [174], modified 
DarkNet CNN [157] 

VGG-19, SqueezeNet, [156,157,173, 
174] 

X-ray:  GoogleNet, MobileNet-V2, ResNet-18, 
ResNet-50, ResNet-101, and Xception) [156], 
InceptionNetV3 [174] 

Specificity 
[154]: [155, 
171] 

[157,174]   [156,157,173, 
174] 

LUS: NA   Others [171]: 
[155–157,173, 
174] 

SoT- 
4 

[157] CT [157]: 3-D [157]: ML and DL hybrid network for classification 
and prognosis [157] 

Resnet18 with Gradient Boosting [157] ACC [157]: 
X-ray: NA LUS: 
NA 

2-D: NA AUC [157]: 

SoT- 
5 

[158,159] CT [158]:  Pleural line identification using ML [158], 
automatic severity assessment and 
exploration of severity related features 
using ML [159] 

Hidden Markov Model and Viterbi Algorithm 
combined with SVM [158], Random forest 
[159] 

ACC [158]: 
[159] 

X-ray: NA LUS 
[158]: 

3-D:NA AUC: [ [159]  

2-D [158]: 
[159] 

Sensitivity 
[158]:   
Specificity 
[158]:   
Others [158]: 
[159] 

SoT- 
6 

[160,172] CT  Ensemble of DL and TL [160], multi-dilation 
CNN for extraction of COVID-19 features 
[172] 

Custom CNN [160,172], (VGG- ACC [160]: 
[172] 

X-ray [160]: 
[172] 

3-D:NA 16, VGG-19, Inception-V3, Xception, 
InceptionResNet- V2, MobileNet- V2, 
DenseNet-201, NasNet- mobile) [160] 

AUC [160]: 
[172] 

LUS: 2-D [160]: 
[172]  

Sensitivity 
[160]: [172]    
Specificity 
[160]: [172]    
Others [160]: 
[172] 

SoT- 
7 

[161–165, 
175] 

CT [165]:  Explainable DL to provide explainability 
about the prediction  

ACC [175]: 
[161–165] 

X-ray: 3-D:NA [175], real time internet based COVID-19 
detection service [161], 

VGG-16 [161,175], Alexnet [165] AUC [161]: 
[162,164] 

[163–165,175] 2-D [175]: 
[161–165] 

TL model trained on ensemble of two 
publicly available datasets [163], 
interpretable AI framework for COVID-19 
classification [164], applying TL on 
comprehensive custom COVID- 19 CT and 
X-ray datasets [165] 

DenseNet201 [162], Xception Sensitivity 
[175]: 
[161–165] 

LUS [161]:   [163], InceptionNetV3 [164] Specificity 
[175]: 
[161–165]     
Others [175]: 
[161–164]  
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A reference DL architecture created using [184] is shown in Fig. 9. 
The most commonly used type of DL architecture is the convolution 
neural network (CNN). This network consists of multiple convolutional 
filters that extract simple visual features from the image data. Multiple 
CNN filters are stacked together in layers so that complex visual features 
can be extracted from the image data. The CNN layers are often bundled 
together with pooling layers to reduce the spatial information contained 
in the intermediate representation and padding layers, thus maintaining 
the appropriate dimensions of the data. 

TL is an extension of state-of-the-art DL architectures that are pre- 

trained using massive datasets. TL techniques produce more accurate 
results when there is less training data, when the available hardware has 
fewer capabilities, or when little training time is available. The reference 
architecture of TL created using [185] (called VGG16) is shown in 
Fig. 10. 

Table 3 presents a comparison of multi-modality AI architectures for 
COVID-19 diagnostics, along with their salient features. The “Arch 
Type” refers to the seven SoT architectures that we have devised after 
clustering various AI research works based on their workflow and intent. 
The “Reference” and “Modality” attributes are self-explanatory. The “3- 

Fig. 8. An online ML-based COVID-19 risk prediction system. (Courtesy of AtheroPoint™, Roseville, CA, USA; reproduced with permission.)  

Fig. 9. A custom CNN-based DL architecture comprising different layers.  

Fig. 10. An example of transfer learning (TL) architecture using VGG16.  
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D/2-D Imaging” attribute shows whether the research has used two- 
dimensional or three-dimensional radiological imaging [186,187]. 

The “Highlight/Objective” attribute represents the distinguishing 
feature of the research. The “Architecture Description” attribute de-
scribes the underlying base AI architecture adapted in the study. The 
“Performance Metrics” attribute shows which metrics the researchers 
had used to validate their work. Readers are encouraged to look into 
dedicated AI-based reviews for a deeper understanding of AI and its 
applications. 

6. Workflow considerations for COVID-19 lung characterization: 
CT vs. X-ray 

The three chest imaging modalities X-ray, CT, and ultrasound have 
been strongly recommended by WHO for the diagnosis of COVID-19 
[90]. In their guidelines, the following observations were given for 
COVID-19 diagnosis. (i)) X-rays was found to be lower in sensitivity and 
higher specificity than chest CT imaging [188,189]. (ii) Chest X-rays are 
less expensive, have lower radiation, takes less acquisition time, and are 
less expensive to use for monitoring than CT. (iii) Chest CT was found to 
have higher sensitivity but lower specificity and emits more radiation 
than X-ray. (iv) Lung ultrasound was found to have very low diagnostic 
accuracy but offers an alternative for several other applications, such as 
the abdomen, carotid, urology, obstetrics, and gynecology imaging. On 
the other hand, ultrasound has a high risk of COVID-19 infection 
transmission due to close contact with the patient compared to other 
imaging modalities. Meanwhile, MRI is a popular imaging modality for 
diagnosing many severe diseases. However, according to the guidelines 
of the American College of Radiology (released on April 8, 2020) [190], 
MRI is not recommended for COVID-19 patients due to the high risk of 
infection [91]. The literature includes studies covering MRI and 
COVID-19 [92–94]; however, no relevant literature was found where 
MRI, COVID-19, and AI were all mentioned, mainly due to the high cost, 
long scanning time, and high risk of infection. FDG-PET/CT [191] im-
aging is another high-level imaging technique that was used in many 
studies to diagnose COVID-19 [95,96]. PET/CT is a more advanced 
imaging technique than CT alone; however, it is more expensive [23, 
192]. We did not find any relevant studies for the diagnosis of COVID-19 
with FDG-PET/CT imaging that used AI. The suitability of X-ray and CT 
imaging for COVID-19 (see Fig. 11), based on recommendations by 
WHO, is shown in Table 4, where we discuss the workflow and the 
practical implementation. The major studies for automated COVID-19 
diagnosis using the AI paradigm with X-rays and CT are [21–23, 
192–202]. Due to their popularity in the scientific community, there are 
several open-source COVID-19 datasets available for X-ray and CT im-
aging modalities, such as the one from RSNA (https://www.rsna.org). 
The percentages of studies using X-ray, CT, or both, shown in Fig. 11(c), 
are 58%, 37%, and 5%, respectively, with CT considered the gold 
standard. These studies were chosen because of the completeness of 
their AI models and the attributes governing them. The following 

attributes were considered for comparing X-rays and CT: (i) number of 
subjects, (ii) risk classes, (iii) 2-D vs. 3-D imaging, (iv) automated vs. 
non-automated ROI segmentation, (v) AI models, (vi) augmented vs. 
non-augmented, (vii) K-fold cross-validation, (vii) hardware and soft-
ware, (ix) optimal models, and (x) performances. Based on these attri-
butes, the studies on X-ray and CT imaging modality for automated 
COVID-19 diagnosis are compared, respectively, in Tables 5 and 6. For 
the 1st attribute (number of subjects), some remarkable studies were 
found ([203–208]) that used a cohort of over 1000 subjects. The 2nd 
attribute (number of classes) was broadly divided into binary and 
multiclass. More than half of the selected studies had binary classifica-
tion [203,204,209–216], while the rest had multiclass. For the 3rd 
attribute (2-D vs. 3-D), two studies ([210,212]) used a 3-D CT volume as 
input, while the rest used 2-D X-ray images. For the 4th attribute, ROI 
segmentation in chest images was an essential aspect prior to classifi-
cation. Three types of ROI were observed; five studies ([203,211,212, 
217,218]) used automated ROI segmentation criteria, and only one 
study ([209]) adopted manual segmentation. Most studies used 
full-sized images for the classification. 

The 5th attribute (type of AI models) includes two main categories, 
ML- and DL-based studies. In one study on chest X-rays, images were 
classified as normal, pneumonia, other diseases, or COVID-19 using a 
DL-based network, with an accuracy of 90.13% [219]. Some of the 
images and their corresponding color maps are shown in Fig. 12. In 
another study, COVID-19 abnormalities were detected in lung CT scans 
using a DL-based network, and a heatmap of corresponding severity 
levels was generated [220]. The resultant images are shown in Fig. 13. 

For the 6th attribute (image augmentation), data limitation is al-
ways a big challenge for medical studies. Therefore, most of the studies 
used TL with DL models in such scenarios, especially when data is 
limited (i.e., in the thousands). Due to limited data, augmentation was 
applied to increase the data synthetically [210–212,215,218]. For this 
method, the images are synthetically increased using operations like 
image transformation (rotation, translation, and scaling), blurring, color 
jiggling, etc. There have been studies that use a patch-based framework 
with a relatively small number of trainable parameters for COVID-19 

Fig. 11. (a) An X-ray scanner. (b) A CT-scanner (Courtesy of Luca Saba, University of Cagliari, Italy). (c) Studies using CT vs. X-ray.  

Table 4 
Compatibility of imaging modality for COVID-19 and adaptability for AI [230].  

Imaging 
Modality 

Suitable for 
COVID-19 
as per WHO 
guidelines 

Cost Risk of 
radiation 

Risk of 
infection 
due to 
close 
contact 

Compatible 
with AI for 
COVID-19 
diagnosis 

PET/CT High Very 
High 

Very 
High 

Low Low 

CT High High Very 
High 

Low Very High 

X-ray Medium Low High Low Medium 
Ultrasound Low Low No High Low 
MRI Low High No Low Low  
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Table 5 
Artificial Intelligence-based studies for automatic COVID-19 detection using lung CT.  

SN Reference aSubj. Risk 
Class 

2-D vs. 3- 
D 

*ROI AI Model Augm. CV H/W-S/W Optimal 
Model 

Performances 

1 Ardakani et al. (2020) 
[209] 

194 2 2-D ⨯ CNN + TL ⨯ NA SPSS software (version 24, 
IBM) 

ResNet101 ACC:99.51% 
SE:100% 
SP:99.02% 
AUC:0.994 

2 Wu et al. (2020) [217] 495 3 2-D ✓ CNN + TL ⨯ NA GPU Python ResNet50 ACC:76.0% 
SE:81.1% 
SP:61.5% 
AUC:0.819 

3 Zheng et al. (2020) 
[210] 

499 2 3-D ⨯ 3-D CNN +
TL 

✓ NA GPU PyTorch UNet ACC: 90.1% 
SE: 90.7% 
SP: 911% 
AUC: 0.976 

4 Yang et al. (2020) [211] 679 2 2-D ✓ CNN ✓ NA GPU PyTorch DenseNet169 ACC:89% 
FS:90% 
AUC:0.98 

5 Gozes et al. (2020) [212] 270 2 2-D & 3- 
D 

✓ 3-D + 2-D 
CNN 

✓ NA NA Resnet50 SE: 98.2% 
SP: 92.2% 
AUC: 0.996 

6 Shi et al. (2020) [203] 2685 2 2-D ✓ ML (RF) ⨯ K5 NA RF ACC:87.9% 
SE: 90.7% 
SP: 83.3% 
AUC: 0.942 

7 Liu et al. (2020) [213] 746 2 2-D ⨯ LA-DNN + TL ⨯ NA NA LA-DNN ACC:88.8% 
F1S: 94.7% 
AUC: 0.88 

8 Panwar et al. (2020) 
[204] 

2482 2 2-D ⨯ CNN + TL ⨯ NA NA VGG19 ACC:87.9% 
SE: 90.7% 
SP: 83.3% 
AUC: 0.942  

a Subj.: Number of subjects in the study; Augm.: Augmentation; NA: Not available; ACC: Accuracy, SE: Sensitivity; SP: Specificity; AUC: Area under the curve; F-M: F- 
measure; KP: Kappa statistics; TL: Transfer Learning; FS: F1-Score LA-DNN: lesion-attention deep neural network; RF: Random forest; ML: machine learning; H/W: 
Hardware; S/W: Software; CV: Cross-Validation; K5: five-fold; ROI: Automated Region of Interest. 

Table 6 
Artificial Intelligence-based studies for automatic COVID-19 detection using lung X-ray.  

SN Reference aSubj. Risk 
Class 

2-D vs. 
3-D 

Auto 
ROI 

AI Model Augm. CV H/W-S/W Optimal Model Performances 

1 Narayan Das et al. (2020) 
[216] 

NA 3 2-D ⨯ CNN + TL ⨯ NA NA Proposed CNN ACC: 97% 
FM: 96% 
SE: 97% 
SP:97% 
KP:0.97 

2 Ouchicha et al. (2020) 
[205] 

2905 3 2-D ⨯ CNN ⨯ K5 NA CVDNet (proposed 
CNN) 

ACC: 90% 
PR: 96.72% 
RC: 96.84% 
FS: 96.68% 

3 Hemdan et al. (2020) 
[214] 

50 2 2-D ⨯ CNN ⨯ NA GPU Python VGG19 DenseNet201 ACC: 96.69% 
PR: 83% 
RC: 100% 
FS: 91% 

4 Zhang et al. (2020) [215] 43,370 1, 2 2-D ⨯ CNN ✓ K5 NA CAAD (proposed 
CNN) 

ACC: 78.57% 
SE: 71.70% 
SP:79.40% 
AUC: 0.83 

5 Togacar et al. (2020) 
[218] 

458 3 2-D ✓ CNN + TL ✓ K5 CPU 
MATLAB 

MobileNetV2 ACC: 99.24% 
SE: 100% 
SP: 97.72% 
FS: 99.43% 

6 Farooq et al. (2020) [206] 2839 4 2-D ⨯ CNN + TL ✓ NA NA ResNet50 ACC: 96.23% 
RC: 100% 
PR: 100% 
FS: 100% 

7 Cozzi et al. (2020) [207] 1427 3 2-D ⨯ CNN + TL ⨯ K10 NA VGG19 ACC: 96.78% 
SE: 98.66% 
SP: 96.46% 

8 Pereira et al. (2020) [208] 1144 7 2-D ⨯ ML + DL +
TL 

⨯ NA NA Multilayer Perceptron FS: 89%  

a Subj.: Number of subjects in the study; Augm: Augmentation; NA: Not available; ACC: Accuracy; SE: Sensitivity; SP: Specificity; AUC: Area under the curve; F-M: F- 
measure; KP: Kappa statistics; PR: precision; RC: recall; FS:F-Score; TL: Transfer Learning; LA-DNN: lesion-attention deep neural network; ML: machine learning; H/W: 
Hardware; S/W: Software; CAAD: confidence-aware anomaly detection model; ROI: Region of Interest. 
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diagnosis, and use multi-scaling for spatial features [221,222]. For the 
cross-validation (the 7th attribute) of the data, the K-fold strategy was 
used to evaluate the performance of the AI technique. In this technique, 
K is the number of folds (or combinations) of training and testing 
samples. 

In each round, the training is performed, and the model predicts the 
outcome based on the test sample. These predictions are compared 
against the gold standard to compute the ROI and performance of the AI 
system. Some authors ([203,205,215], and [218]) used five-fold CV, and 
one author [207] used ten-fold CV. The hardware constraints (the 8th 
attribute) is discussed further in the critical discussion section. During 
optimization (the 9th attribute) of the AI model, it is important to avoid 
overfitting. CV and TL were used to suppress over-fitting in supervised 
learning. Overfitting is a situation where the model can predict known 
data accurately, but is unable to predict unknown data. There are many 
ways to avoid overfitting; one of them is to use more data in the training 
model. The performance (the 10th attribute) of the classifier depends 
on various factors, such as the number of subjects, the sample size, the 
training iterations, the training time, etc. Therefore, we cannot identify a 
single best-performing model or method at this stage. However, over 
time, as more studies and trials are conducted, the superior AI models 
will emerge. 

7. Critical discussion 

Clinical Requirements for COVID-19 AI Systems. An ideal AI system for 
COVID-19 must be robust and stable, and its output must vary within the 
acceptable limits with changes in the demographics or other patient- 
related characteristics. It must be reliable and reproducible; i.e., it 
must yield similar results across multiple trials. Furthermore, when used 
in an operating room, it must be reasonably fast and cost-effective 
compared to traditional COVID-19 diagnostic techniques (e.g., real- 

time polymerase chain reaction (RT-PCR) tests). The AI system must 
be generalized by being trained and tested on an equal percentage of 
data. COVID-19 severity is a critical metric for doctors treating COVID- 
19 patients, and it is a desirable requirement of any AI diagnostic 
system. 

Radiologists, pulmonologists, and doctors must validate the results 
of the AI system before its effectiveness can be determined. Finally, the 
AI system should segment the impact of COVID-19 on different organs 
using 3-D imaging to further assist clinicians. There is a vast potential for 
improvement for existing SoT using the AI-assisted diagnostics of 
COVID-19 patients by incorporating the above clinical requirements. 

System Optimization. The majority of AI-based systems for COVID-19 
detection and classification are based on DL. Several researchers have 
used data augmentation to increase the volume of COVID-19 data for 
training. The number of convolution layers is a hyperparameter that 
researchers need to adjust based on their intuition. However, DL-focused 
AI systems for COVID-19 need to be optimized based on the relationship 
between augmentation, the number of convolution layers, and classifi-
cation accuracy (Fig. 14). 

Scientific Validation. The behavior of an AI-based COVID-19 di-
agnostics system should be observed and validated under various co-
morbidity conditions. There are numerous scenarios in which the 
underlying assumptions may change. For example, the CT scan’s 
thickness can be altered, or a different view of a CT scan (coronal, 
sagittal, and axial) can be given to the system for diagnostic purposes. 
Furthermore, the stability of a system must be validated by changing the 
combination of data that is used (e.g., K10, K5, K2, the so-called parti-
tion protocol). A stable AI system will yield a minimum standard devi-
ation value across different data combinations [165]. The system should 
also be validated for patients from different age groups and with 
different comorbidities. 

Clinical Validation. In order for the research to be accepted by the 

Fig. 12. X-ray scans of COVID-19, pneumonia, and normal lungs (Reproduced with permission [219]).  

Fig. 13. CT scans classified as positive for coronavirus abnormalities and their corresponding color heatmaps (Reproduced with permission [220]).  
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regulatory authorities, a gold standard validation should be performed 
through a physical examination of the body organs against the results 
predicted by the AI system. One way of doing this is through the 
microscopic validation of the body tissues for the severity of ARDS from 
COVID-19, as shown in Fig. 15. Inter-observer and intra-observer vari-
ability analysis [223] should also be performed to minimize any human 
bias in the system. 

AI for COVID-19 Comorbidity and Age-Group Frameworks. The AI 
system must be designed to accommodate the patients’ comorbidities (e. 
g., diabetes, cardiovascular diseases, obesity, retinopathy, pancreatic 
diseases, blood vessel diseases, and angiography [224]), along with their 
age groups. In Ref. [225], an AI system was developed to predict car-
diovascular diseases in a multi-ethnic patient scenario. The AI systems 
designed in Refs. [226,227] can be extended to COVID-19 diagnosis by 
including comorbidities and age groups. 

The primary AI system can be broken down into multiple subsystems 
for various comorbidity classes, with each comorbidity class having 
further subclasses for different age groups. For instance, if there are five 
comorbidities and three age groups, there will be 15 subsystems. Each 
subsystem should be trained separately using a different gold standard 
database [228]. The appropriate AI subsystem for a new patient can be 
determined by feeding additional input information about the patient’s 
comorbidities and age group into the system. 

3-D Image Acquisition and Processing. Most AI research for COVID-19 
shows the severity of the lung infection in 2-D, which is undesirable 
because the disease progression cannot be depicted accurately in 2-D. It 
is therefore helpful to evaluate the COVID-19 data in 3-D (see Fig. 16). 
Scans of the Patients can be acquired during the contrast enhancement 
of a lung ultrasound [231]. A contrast agent, if included in the 

bloodstream, aids the early management and prognosis of COVID-19. In 
Ref. [232], the authors used 3-D CT for diagnosis and classification of 
lung lesions affected by COVID-19. Recently, the authors in Ref. [233] 
used DensNet121-FPN for segmentation of the lung and classification 
using deep learning strategy. 

Multi-Modality Data. Radiography provides many solutions for 
diagnosing COVID-19, like lung CT, chest X-rays, lung ultrasound, and 
PET/CT scans. The choice of modality depends on the patient’s 
comorbidities, age, and pre-test probabilities (PTPs) [18]. A PTP test on 
troponin levels (which is an indirect indicator of hypoxia) can be con-
ducted to identify the severity of a COVID-19 infection. During the 
initial phase of the COVID-19 infection, X-rays and lung ultrasounds can 
be useful owing to their low cost and easy obtainability, and to the small 
footprint of the medical device. However, if a patient has comorbidities, 
is elderly, or has COVID-19-induced ARDS (which leads to hypoxia), 
lung CT is likely the best modality due to its higher resolution and robust 
diagnostic capabilities. Any AI system for COVID-19 must be adaptable 
and generalizable to multiple modalities according to each patient’s 
requirements. 

Tissue Characterization of Lung Scans. In our previous work [3], we 
performed a bispectrum (B) analysis on COVID-19 lung tissues based on 
a higher order spectrum (HoS) to validate the survey results without 
using AI. The results (Fig. 17) confirm that COVID-19-infected samples 
possess much higher B-values than non-infected samples. Thus, AI can 
effectively exploit the underlying patterns to distinguish COVID-19 
samples from non-COVID-19 samples. 

Data Collection. It is desirable to collect data during a sizeable tem-
poral window and from geographically distant locations, because this 
reduces biases related to age, comorbidity, ethnicity, and other factors 

Fig. 14. A 3-D graph representing the relationship between CNN layers, data augmentation, and accuracy. (Courtesy of AtheroPoint™, Roseville, CA, USA; 
reproduced with permission [14].) 

Fig. 15. Microscopic views of (a) interstitial pneumonia and (b) COVID-19 pneumonia. (Courtesy of Luca Saba, A.O.U., Cagliari, Italy.)  
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Fig. 16. Three lungs with non-COVID-19 pneumonia (a1, a2, and a3). Three lungs with COVID-19 pneumonia with different COVID-19 severities (b1, b2, and b3). 
(Courtesy of AtheroPoint™, Roseville, CA, USA; reproduced with permission.) 

Fig. 17. Bispectrum analysis of non-COVID-19 pneumonia (NCoP) and COVID-19 pneumonia (CoP). (Courtesy of AtheroPoint™, Roseville, CA, USA; reproduced 
with permission.) 
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among COVID-19 patients. Patient data must also be multiclass, con-
sisting of a control class and various types of pneumonia classes (e.g., 
COVID-19, viral, bacterial, HIV, and MERS). Meeting these conditions 
helps to create a more generalized and robust AI system that can be used 
for COVID-19 diagnostics in any medical setting without the need to 
perform localized validations or retraining. 

AI and Hardware Constraints. GPUs are essential in DL studies [234, 
235]. Most of the studies (training and testing) are performed on GPUs 
using open-source platforms like Google-Colab, with Python as the 
language and TensorFlow or PyTorch as the framework [14,102]. 

Strengths, Limitations, and Extensions. This study provides an insight 
into acute respiratory distress syndrome; into its relationship to co-
morbidity; into medical imaging modalities for imaging COVID-19 
subjects in an ARDS framework; into the workflow and practical as-
pects of premier imaging tools; into the design of AI architectures and 
their adaptation to handle ARDS-based lung severity diagnoses; and 
finally, into the role of AI-based solutions for comorbid conditions. The 
study also highlights the critical components needed for a safe and 
effective AI-based paradigm for risk assessment of COVID-19 severity. 

Even though the study offers several new directions through the 
amalgamation of comorbidity-based AI designs, it is missing several 
other facets that could be included in a more compressive review. These 
include the biological processes that inherit comorbidities. This omis-
sion is mainly due to limitations of manuscript length. More stringent 
comparisons of deep learning paradigms can be adapted; we have pro-
vided leads to previously published dedicated reviews on AI. 

Future research should look for a way to quickly determine the 
COVID-19 severity using a global positioning system in target lung re-
gions in 2-D and 3-D images, while considering comorbidity and time 
constraints [236–238]. This fundamental study can also be further 
developed in several other directions, covering the fields of neurology 
[239], cardiology, diabetology [240], and ophthalmology [241]. This 
includes the applications of statistical tools for more systematic review 
and meta-analysis (SRMA). Since this is a narrative review, the SRMA is 
beyond its scope. 

8. Conclusion 

This study is one of the latest contributions that investigated 
different kinds of comorbidities, its contributions to the ARDS-based 
framework, its effect on mortality, and finally, the study proposed the 
AI-based solutions using comorbidity as an independent factor in their 
design. The salient features of the seven types of school-of-thought were 
presented, and their architectural characteristics were highlighted. We 
conclude that there are critical components of the AI system that must be 
thoroughly investigated before it can be applied clinically for diagnosis 
of COVID-19 severity. These include (a) scientific and clinical valida-
tion, (b) optimization of layers vs. augmentation for best AI optimized 
architecture design, (c) application of imaging modality based on 
COVID-19 symptoms severity and troponin release. Lastly, we conclude 
that the most powerful paradigm where the future holds for ARDS 
characterization is by incorporating the comorbidity and age-group as 
one of the distinguishing and novel features in the AI design [242–244]. 

Declaration of competing interest 

We wish to confirm that there are no known conflicts of interest 
associated with this publication and there has been no significant 
financial support for this work that could have influenced its outcome. 
We confirm that the manuscript has been read and approved by all 
named authors and that there are no other persons who satisfied the 
criteria for authorship but are not listed. We further confirm that the 
order of authors listed in the manuscript has been approved by all of us. 

We confirm that we have given due consideration to the protection of 
intellectual propertyassociated with this work and that there are no 
impediments to publication, including thetiming of publication, with 

respect to intellectual property. In so doing we confirm that we have 
followed the regulations of our institutions concerning intellectual 
property. 

We understand that the Corresponding Author is the sole contact for 
the Editorial process. He is responsible for communicating with the 
other authors about progress, submissions of revisions and final 
approval of proofs. We confirm that we have provided a current, correct 
email address which is accessible by the Corresponding Author and 
which has been configured to accept email from.” 

I, Mainak Biswas on behalf of all authors of the manuscript “A 
Narrative Review on Characterization of Acute Respiratory Distress 
Syndrome in COVID-19 Lungs using Artificial Intelligence” hereby 
declare that the details furnished above are true and correct to the best 
of my knowledge and belief. In case any of the above information is 
found to be false or untrue or misleading or misrepresenting, I am aware 
that I may be held liable for it. 

References 

[1] M.A. Shereen, S. Khan, A. Kazmi, N. Bashir, R. Siddique, COVID-19 infection: 
origin, transmission, and characteristics of human coronaviruses, J. Adv. Res. 24 
(2020) 91–98. 

[2] Y.-R. Guo, Q.-D. Cao, Z.-S. Hong, Y.-Y. Tan, S.-D. Chen, H.-J. Jin, K.-S. Tan, D.- 
Y. Wang, Y. Yan, The origin, transmission and clinical therapies on coronavirus 
disease 2019 (COVID-19) outbreak - an update on the status, Mil Med Res 7 
(2020), 11-11. 

[3] R.J.L. Horton, Offline: COVID-19 is not a pandemic 396 (2020) 874. 
[4] D. Cucinotta, M. Vanelli, WHO Declares COVID-19 a Pandemic. 
[5] https://www.worldometers.info/coronavirus/. 
[6] M. D’Arienzo, A. Coniglio, Assessment of the SARS-CoV-2 basic reproduction 

number, R (0), based on the early phase of COVID-19 outbreak in Italy, Biosaf 
Health 2 (2020) 57–59. 

[7] S. Ravalli, G. Musumeci, Coronavirus Outbreak in Italy: Physiological Benefits of 
Home-Based Exercise during Pandemic, Multidisciplinary Digital Publishing 
Institute, 2020. 

[8] A. Wilder-Smith, C.J. Chiew, V.J. Lee, Can we contain the COVID-19 outbreak 
with the same measures as for SARS? Lancet Infect. Dis. 20 (2020) e102–e107. 

[9] G. Maugeri, P. Castrogiovanni, G. Battaglia, R. Pippi, V. D’Agata, A. Palma, M. Di 
Rosa, G.J.H. Musumeci, The Impact of Physical Activity on Psychological Health 
during Covid-19 Pandemic in Italy, vol. 6, 2020, e04315. 

[10] I.A. Lesser, C.P. Nienhuis, P. Health, The Impact of COVID-19 on Physical Activity 
Behavior and Well-Being of Canadians, vol. 17, 2020, p. 3899. 

[11] V. Viswanathan, A. Puvvula, A.D. Jamthikar, A Pathophysiological Bidirectional 
Association between Diabetes Mellitus and COVID-19 Leading to Heart and Brain 
Injury: A Mini-Review. 

[12] L. Saba, C. Gerosa, M. Wintermark, U. Hedin, D. Fanni, J.S. Suri, A. Balestrieri, 
G. Faa, Can COVID19 trigger the plaque vulnerability—a Kounis syndrome 
warning for “asymptomatic subjects”, Cardiovasc. Diagn. Ther. 10 (2020) 
1352–1355. 

[13] Pubmed COVID-19 Publicatons. 
[14] S.S. Skandha, S.K. Gupta, L. Saba, V.K. Koppula, A.M. Johri, N.N. Khanna, 

S. Mavrogeni, J.R. Laird, G. Pareek, M. Miner, P.P. Sfikakis, A. Protogerou, D. 
P. Misra, V. Agarwal, A.M. Sharma, V. Viswanathan, V.S. Rathore, M. Turk, 
R. Kolluri, K. Viskovic, E. Cuadrado-Godia, G.D. Kitas, A. Nicolaides, J.S. Suri, 3-D 
optimized classification and characterization artificial intelligence paradigm for 
cardiovascular/stroke risk stratification using carotid ultrasound-based 
delineated plaque: atheromatic™ 2.0, Comput. Biol. Med. 125 (2020) 103958. 

[15] https://ourworldindata.org/grapher/total-confirmed-cases-of-covid-19-per-mi 
llion-people. 

[16] L. Saba, M. Biswas, V. Kuppili, E. Cuadrado Godia, H.S. Suri, D.R. Edla, 
T. Omerzu, J.R. Laird, N.N. Khanna, S. Mavrogeni, A. Protogerou, P.P. Sfikakis, 
V. Viswanathan, G.D. Kitas, A. Nicolaides, A. Gupta, J.S. Suri, The present and 
future of deep learning in radiology, Eur. J. Radiol. 114 (2019) 14–24. 

[17] M. Biswas, V. Kuppili, L. Saba, D.R. Edla, H.S. Suri, E. Cuadrado-Godia, J.R. Laird, 
R.T. Marinhoe, J.M. Sanches, A. Nicolaides, J.S. Suri, State-of-the-art review on 
deep learning in medical imaging, Front. Biosci. 24 (2019) 392–426. 

[18] J.S. Suri, A. Puvvula, M. Biswas, M. Majhail, L. Saba, G. Faa, I.M. Singh, 
R. Oberleitner, M. Turk, P.S. Chadha, A.M. Johri, J.M. Sanches, N.N. Khanna, 
K. Viskovic, S. Mavrogeni, J.R. Laird, G. Pareek, M. Miner, D.W. Sobel, 
A. Balestrieri, P.P. Sfikakis, G. Tsoulfas, A. Protogerou, D.P. Misra, V. Agarwal, G. 
D. Kitas, P. Ahluwalia, R. Kolluri, J. Teji, M.A. Maini, A. Agbakoba, S.K. Dhanjil, 
M. Sockalingam, A. Saxena, A. Nicolaides, A. Sharma, V. Rathore, J.N. 
A. Ajuluchukwu, M. Fatemi, A. Alizad, V. Viswanathan, P.R. Krishnan, S. Naidu, 
COVID-19 pathways for brain and heart injury in comorbidity patients: a role of 
medical imaging and artificial intelligence-based COVID severity classification: a 
review, Comput. Biol. Med. 124 (2020), 103960-103960. 

[19] M. Gatto, E. Bertuzzo, L. Mari, S. Miccoli, L. Carraro, R. Casagrandi, A. Rinaldo, 
Spread and dynamics of the COVID-19 epidemic in Italy: effects of emergency 
containment measures, Proc. Natl. Acad. Sci. U. S. A. 117 (2020) 10484–10491. 

J.S. Suri et al.                                                                                                                                                                                                                                   

http://refhub.elsevier.com/S0010-4825(21)00004-4/sref1
http://refhub.elsevier.com/S0010-4825(21)00004-4/sref1
http://refhub.elsevier.com/S0010-4825(21)00004-4/sref1
http://refhub.elsevier.com/S0010-4825(21)00004-4/sref2
http://refhub.elsevier.com/S0010-4825(21)00004-4/sref2
http://refhub.elsevier.com/S0010-4825(21)00004-4/sref2
http://refhub.elsevier.com/S0010-4825(21)00004-4/sref2
http://refhub.elsevier.com/S0010-4825(21)00004-4/sref3
https://www.worldometers.info/coronavirus/
http://refhub.elsevier.com/S0010-4825(21)00004-4/sref6
http://refhub.elsevier.com/S0010-4825(21)00004-4/sref6
http://refhub.elsevier.com/S0010-4825(21)00004-4/sref6
http://refhub.elsevier.com/S0010-4825(21)00004-4/sref7
http://refhub.elsevier.com/S0010-4825(21)00004-4/sref7
http://refhub.elsevier.com/S0010-4825(21)00004-4/sref7
http://refhub.elsevier.com/S0010-4825(21)00004-4/sref8
http://refhub.elsevier.com/S0010-4825(21)00004-4/sref8
http://refhub.elsevier.com/S0010-4825(21)00004-4/sref9
http://refhub.elsevier.com/S0010-4825(21)00004-4/sref9
http://refhub.elsevier.com/S0010-4825(21)00004-4/sref9
http://refhub.elsevier.com/S0010-4825(21)00004-4/sref10
http://refhub.elsevier.com/S0010-4825(21)00004-4/sref10
http://refhub.elsevier.com/S0010-4825(21)00004-4/sref12
http://refhub.elsevier.com/S0010-4825(21)00004-4/sref12
http://refhub.elsevier.com/S0010-4825(21)00004-4/sref12
http://refhub.elsevier.com/S0010-4825(21)00004-4/sref12
http://refhub.elsevier.com/S0010-4825(21)00004-4/sref14
http://refhub.elsevier.com/S0010-4825(21)00004-4/sref14
http://refhub.elsevier.com/S0010-4825(21)00004-4/sref14
http://refhub.elsevier.com/S0010-4825(21)00004-4/sref14
http://refhub.elsevier.com/S0010-4825(21)00004-4/sref14
http://refhub.elsevier.com/S0010-4825(21)00004-4/sref14
http://refhub.elsevier.com/S0010-4825(21)00004-4/sref14
https://ourworldindata.org/grapher/total-confirmed-cases-of-covid-19-per-million-people
https://ourworldindata.org/grapher/total-confirmed-cases-of-covid-19-per-million-people
http://refhub.elsevier.com/S0010-4825(21)00004-4/sref16
http://refhub.elsevier.com/S0010-4825(21)00004-4/sref16
http://refhub.elsevier.com/S0010-4825(21)00004-4/sref16
http://refhub.elsevier.com/S0010-4825(21)00004-4/sref16
http://refhub.elsevier.com/S0010-4825(21)00004-4/sref17
http://refhub.elsevier.com/S0010-4825(21)00004-4/sref17
http://refhub.elsevier.com/S0010-4825(21)00004-4/sref17
http://refhub.elsevier.com/S0010-4825(21)00004-4/sref18
http://refhub.elsevier.com/S0010-4825(21)00004-4/sref18
http://refhub.elsevier.com/S0010-4825(21)00004-4/sref18
http://refhub.elsevier.com/S0010-4825(21)00004-4/sref18
http://refhub.elsevier.com/S0010-4825(21)00004-4/sref18
http://refhub.elsevier.com/S0010-4825(21)00004-4/sref18
http://refhub.elsevier.com/S0010-4825(21)00004-4/sref18
http://refhub.elsevier.com/S0010-4825(21)00004-4/sref18
http://refhub.elsevier.com/S0010-4825(21)00004-4/sref18
http://refhub.elsevier.com/S0010-4825(21)00004-4/sref18
http://refhub.elsevier.com/S0010-4825(21)00004-4/sref19
http://refhub.elsevier.com/S0010-4825(21)00004-4/sref19
http://refhub.elsevier.com/S0010-4825(21)00004-4/sref19


Computers in Biology and Medicine 130 (2021) 104210

17

[20] S.J.C. rekha Hanumanthu, Solitons, Fractals, Role of Intelligent Computing in 
COVID-19 Prognosis: A State-Of-The-Art Review, 2020, p. 109947. 

[21] Y. Deng, L. Lei, Y. Chen, W. Zhang, The potential added value of FDG PET/CT for 
COVID-19 pneumonia, Eur. J. Nucl. Med. Mol. Imag. 47 (2020) 1634–1635. 

[22] C. Liu, J. Zhou, L. Xia, X. Cheng, D. Lu, 18F-FDG PET/CT and serial chest CT 
findings in a COVID-19 patient with dynamic clinical characteristics in different 
period, Clin. Nucl. Med. 45 (2020) 495–496. 

[23] S. Maurea, C.G. Mainolfi, C. Bombace, A. Annunziata, L. Attanasio, M. Petretta, 
S. Del Vecchio, A. Cuocolo, FDG-PET/CT imaging during the Covid-19 
emergency: a southern Italian perspective, Eur. J. Nucl. Med. Mol. Imag. 47 
(2020) 2691–2697. 

[24] P. Verdecchia, C. Cavallini, A. Spanevello, F. Angeli, The pivotal link between 
ACE2 deficiency and SARS-CoV-2 infection, Eur. J. Intern. Med. 76 (2020) 14–20. 

[25] E.C. Mossel, J. Wang, S. Jeffers, K.E. Edeen, S. Wang, G.P. Cosgrove, C.J. Funk, 
R. Manzer, T.A. Miura, L.D. Pearson, K.V. Holmes, R.J. Mason, SARS-CoV 
replicates in primary human alveolar type II cell cultures but not in type I-like 
cells, Virology 372 (2008) 127–135. 

[26] Luca Saba, D.F. Clara Gerosa, Francesco Marongiu, Giorgio La Nasa, 
Giovanni Caocci, Doris Barcellona, Antonella Balestrieri, Ferdinando Coghe, 
Germano Orru, S Suri Jasjit, Riccardo Cau, Massimo Castagnola, Gavino Faa, 
Molecular Pathways Triggered by COVID19 in Different Organs: ACE2 Receptor- 
Expressing Cells under Attack? A Review, 2020. 

[27] P. Zhou, X.-L. Yang, X.-G. Wang, B. Hu, L. Zhang, W. Zhang, H.-R. Si, Y. Zhu, B. Li, 
C.-L. Huang, H.-D. Chen, J. Chen, Y. Luo, H. Guo, R.-D. Jiang, M.-Q. Liu, Y. Chen, 
X.-R. Shen, X. Wang, X.-S. Zheng, K. Zhao, Q.-J. Chen, F. Deng, L.-L. Liu, B. Yan, 
F.-X. Zhan, Y.-Y. Wang, G.-F. Xiao, Z.-L. Shi, A pneumonia outbreak associated 
with a new coronavirus of probable bat origin, Nature 579 (2020) 270–273. 

[28] Z. Qian, E.A. Travanty, L. Oko, K. Edeen, A. Berglund, J. Wang, Y. Ito, K. 
V. Holmes, R.J. Mason, Innate immune response of human alveolar type II cells 
infected with severe acute respiratory syndrome-coronavirus, Am. J. Respir. Cell 
Mol. Biol. 48 (2013) 742–748. 

[29] Y. Ding, H. Wang, H. Shen, Z. Li, J. Geng, H. Han, J. Cai, X. Li, W. Kang, D. Weng, 
Y. Lu, D. Wu, L. He, K. Yao, The clinical pathology of severe acute respiratory 
syndrome (SARS): a report from China, J. Pathol. 200 (2003) 282–289. 

[30] J. Liu, X. Zheng, Q. Tong, W. Li, B. Wang, K. Sutter, M. Trilling, M. Lu, U. Dittmer, 
D. Yang, Overlapping and discrete aspects of the pathology and pathogenesis of 
the emerging human pathogenic coronaviruses SARS-CoV, MERS-CoV, and 2019- 
nCoV, J. Med. Virol. 92 (2020) 491–494. 

[31] S. Wang, T.Q. Le, N. Kurihara, J. Chida, Y. Cisse, M. Yano, H. Kido, Influenza 
virus-cytokine-protease cycle in the pathogenesis of vascular hyperpermeability 
in severe influenza, J. Infect. Dis. 202 (2010) 991–1001. 

[32] C. Huang, Y. Wang, X. Li, L. Ren, J. Zhao, Y. Hu, L. Zhang, G. Fan, J. Xu, X. Gu, 
Z. Cheng, T. Yu, J. Xia, Y. Wei, W. Wu, X. Xie, W. Yin, H. Li, M. Liu, Y. Xiao, 
H. Gao, L. Guo, J. Xie, G. Wang, R. Jiang, Z. Gao, Q. Jin, J. Wang, B. Cao, Clinical 
features of patients infected with 2019 novel coronavirus in Wuhan, China, 
Lancet 395 (2020) 497–506. 

[33] M.A. Matthay, L.B. Ware, G.A. Zimmerman, The acute respiratory distress 
syndrome, J. Clin. Invest. 122 (2012) 2731–2740. 

[34] A.L. Katzenstein, C.M. Bloor, A.A. Leibow, Diffuse alveolar damage–the role of 
oxygen, shock, and related factors. A review, Am. J. Pathol. 85 (1976) 209–228. 

[35] T.J. Nuckton, J.A. Alonso, R.H. Kallet, B.M. Daniel, J.-F. Pittet, M.D. Eisner, M. 
A. Matthay, Pulmonary dead-space fraction as a risk factor for death in the acute 
respiratory distress syndrome, N. Engl. J. Med. 346 (2002) 1281–1286. 

[36] C. Wu, X. Chen, Y. Cai, J.a. Xia, X. Zhou, S. Xu, H. Huang, L. Zhang, X. Zhou, 
C. Du, Y. Zhang, J. Song, S. Wang, Y. Chao, Z. Yang, J. Xu, X. Zhou, D. Chen, 
W. Xiong, L. Xu, F. Zhou, J. Jiang, C. Bai, J. Zheng, Y. Song, Risk factors 
associated with acute respiratory distress syndrome and death in patients with 
coronavirus disease 2019 pneumonia in wuhan, China, JAMA Intern Med 180 
(2020) 934–943. 

[37] J. Lian, X. Jin, S. Hao, H. Cai, S. Zhang, L. Zheng, H. Jia, J. Hu, J. Gao, Y. Zhang, 
X. Zhang, G. Yu, X. Wang, J. Gu, C. Ye, C. Jin, Y. Lu, X. Yu, X. Yu, Y. Ren, Y. Qiu, 
L. Li, J. Sheng, Y. Yang, Analysis of epidemiological and clinical features in older 
patients with coronavirus disease 2019 (COVID-19) outside wuhan, Clin. Infect. 
Dis. 71 (2020) 740–747. 

[38] Y. Liu, W. Sun, J. Li, L. Chen, Y. Wang, L. Zhang, L. Yu, Clinical Features and 
Progression of Acute Respiratory Distress Syndrome in Coronavirus Disease 2019, 
Cold Spring Harbor Laboratory, 2020. 

[39] A. Khan, A. Chatterjee, S. Singh, Comorbidities and Disparities in Outcomes of 
COVID-19 Among African American and White Patients, Cold Spring Harbor 
Laboratory, 2020. 

[40] P. Zhang, L. Zhu, J. Cai, F. Lei, J.-J. Qin, J. Xie, Y.-M. Liu, Y.-C. Zhao, X. Huang, 
L. Lin, M. Xia, M.-M. Chen, X. Cheng, X. Zhang, D. Guo, Y. Peng, Y.-X. Ji, J. Chen, 
Z.-G. She, Y. Wang, Q. Xu, R. Tan, H. Wang, J. Lin, P. Luo, S. Fu, H. Cai, P. Ye, 
B. Xiao, W. Mao, L. Liu, Y. Yan, M. Liu, M. Chen, X.-J. Zhang, X. Wang, M. Touyz 
Rhian, J. Xia, B.-H. Zhang, X. Huang, Y. Yuan, R. Loomba, P. Liu Peter, H. Li, 
Association of inpatient use of angiotensin-converting enzyme inhibitors and 
angiotensin II receptor blockers with mortality among patients with hypertension 
hospitalized with COVID-19, Circ. Res. 126 (2020) 1671–1681. 

[41] M. Maniruzzaman, N. Kumar, M. Menhazul Abedin, M. Shaykhul Islam, H.S. Suri, 
A.S. El-Baz, J.S. Suri, Comparative approaches for classification of diabetes 
mellitus data: machine learning paradigm, Comput. Methods Progr. Biomed. 152 
(2017) 23–34. 

[42] M. Dreher, A. Kersten, J. Bickenbach, P. Balfanz, B. Hartmann, C. Cornelissen, 
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[218] M. Toğaçar, B. Ergen, Z. Cömert, COVID-19 detection using deep learning models 
to exploit Social Mimic Optimization and structured chest X-ray images using 
fuzzy color and stacking approaches, Comput. Biol. Med. 121 (2020), 103805- 
103805. 

[219] S. Basu, S.J.a.p.a. Mitra, Deep Learning for Screening COVID-19 Using Chest X- 
Ray Images, 2020. 

[220] O. Gozes, M. Frid-Adar, H. Greenspan, P.D. Browning, H. Zhang, W. Ji, 
A. Bernheim, E.J.a.p.a. Siegel, Rapid Ai Development Cycle for the Coronavirus 
(Covid-19) Pandemic: Initial Results for Automated Detection & Patient 
Monitoring Using Deep Learning Ct Image Analysis, 2020. 

[221] T. Yan, P.K. Wong, H. Ren, H. Wang, J. Wang, Y.J.C. Li, Solitons, Fractals, 
Automatic distinction between covid-19 and common pneumonia using multi- 
scale convolutional neural network on chest ct scans 140 (2020) 110153. 

[222] Y. Oh, S. Park, J.C. Ye, Deep Learning Covid-19 Features on Cxr Using Limited 
Training Data Sets, 2020. 

[223] L. Saba, J.C.M. Than, N.M. Noor, O.M. Rijal, R.M. Kassim, A. Yunus, C.R. Ng, J. 
S. Suri, Inter-observer variability analysis of automatic lung delineation in normal 
and disease patients, J. Med. Syst. 40 (2016). 

[224] K. Liu, J.S. Suri, Automatic Vessel Indentification for Angiographic Screening, 
Google Patents, 2005. 

[225] B. Ambale-Venkatesh, X. Yang, C.O. Wu, K. Liu, W.G. Hundley, R. McClelland, A. 
S. Gomes, A.R. Folsom, S. Shea, E. Guallar, D.A. Bluemke, J.A.C. Lima, 
Cardiovascular event prediction by machine learning: the multi-ethnic study of 
atherosclerosis, Circ. Res. 121 (2017) 1092–1101. 

[226] G.S. Tandel, A. Balestrieri, T. Jujaray, N.N. Khanna, L. Saba, J.S. Suri, Multiclass 
magnetic resonance imaging brain tumor classification using artificial 
intelligence paradigm, Comput. Biol. Med. 122 (2020) 103804. 

[227] V.K. Shrivastava, N.D. Londhe, R.S. Sonawane, J.S. Suri, A novel and robust 
Bayesian approach for segmentation of psoriasis lesions and its risk stratification, 
Comput. Methods Progr. Biomed. 150 (2017) 9–22. 

[228] A. Jamthikar, D. Gupta, L. Saba, N.N. Khanna, K. Viskovic, S. Mavrogeni, J. 
R. Laird, N. Sattar, A.M. Johri, G.J.C.i.B. Pareek, Medicine, Artificial Intelligence 
Framework for Predictive Cardiovascular and Stroke Risk Assessment Models: A 
Narrative Review of Integrated Approaches Using Carotid Ultrasound, 2020, 
p. 104043. 

[229] X. Wu, H. Hui, M. Niu, L. Li, L. Wang, B. He, X. Yang, L. Li, H. Li, J. Tian, Y. Zha, 
Deep learning-based multi-view fusion model for screening 2019 novel 
coronavirus pneumonia: a multicentre study, Eur. J. Radiol. 128 (2020), 109041- 
109041. 

[230] W.H. Organization, Use of Chest Imaging in COVID-19, 2020, pp. 1–56. 
[231] G.T. Yusuf, A. Wong, D. Rao, A. Tee, C. Fang, P.S. Sidhu, The use of contrast- 

enhanced ultrasound in COVID-19 lung imaging, J Ultrasound (2020) 1–5. 

[232] Q. Ni, Z.Y. Sun, L. Qi, W. Chen, Y. Yang, L. Wang, X. Zhang, L. Yang, Y. Fang, Z.J. 
E.r. Xing, A Deep Learning Approach to Characterize 2019 Coronavirus Disease 
(COVID-19) Pneumonia in Chest CT Images, vol. 30, 2020, pp. 6517–6527. 

[233] S. Wang, Y. Zha, W. Li, Q. Wu, X. Li, M. Niu, M. Wang, X. Qiu, H. Li, H.J.E.R.J. Yu, 
A Fully Automatic Deep Learning System for COVID-19 Diagnostic and Prognostic 
Analysis, 2020. 

[234] R. Narayanan, P.N. Werahera, A. Barqawi, E.D. Crawford, K. Shinohara, A. 
R. Simoneau, J.S. Suri, Adaptation of a 3D prostate cancer atlas for transrectal 
ultrasound guided target-specific biopsy, Phys. Med. Biol. 53 (2008) N397–N406. 

[235] F. Shen, R. Narayanan, J.S. Suri, Rapid motion compensation for prostate biopsy 
using GPU, in: Annual International Conference of the IEEE Engineering in 
Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. 
Annual International Conference, 2008, pp. 3257–3260, 2008. 

[236] State of the Art in Neural Networks and Their Applications - 1st Edition. 
[237] U.R. Acharya, S. Vinitha Sree, M.R. Mookiah, R. Yantri, F. Molinari, W. Zieleźnik, 
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Symbol Table 

2-D: Two dimensions 
3-D: Three dimensions 
ACC: Accuracy 
AI: Artificial intelligence 
ARDS: Acute respiratory distress syndrome 
AUC: Area-under-the-curve 
CNN: Convolution neural network 
CT: Computed tomography 
DL: Deep learning 
FS: F1-score 
GPU: Graphics Processing Unit 
H/W and S/W: Hardware and software 
LUS: Lung ultrasound 
ML: Machine learning 
MRI: Magnetic resonance imaging 
RF: Random forest 
RSNA: Radiological Society of North America 
SE: Sensitivity 
SP: Specificity 
TL: Transfer learning 
US: Ultrasound 
X-ray: Röntgen radiation 
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